Skip to main content
Log in

Resonance Method for Measurement of the Ionospheric Plasma Density on Board Microsatellites

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A method has been developed for diagnostics of the ionospheric plasma density on board a microsatellite is developed using a resonator made on a segment of a two-wire line. The measurements of plasma parameters is based on the amplitude–phase method, which permits extending the dynamic range of measured values by three orders of magnitude without increasing the resonator length. The paper presents a measurement technique and its experimental testing on a plasma setup under conditions as close as possible to the ionospheric ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. M. Smith, C. N. Mitchell, R. J. Watson, R. W. Meggs, P. M. Kintner, K. Kauristie, and F. Honary, Space Weather 6 (3), S03D01 (2008). https://doi.org/10.1029/2007SW000349

  2. I. Cherniak, A. Krankowski, and I. Zakharenkova, Radio Sci. 49 (8), 653 (2014). https://doi.org/10.1002/2014RS005433

    Article  ADS  Google Scholar 

  3. V. L. Frolov, Artificial Turbulence in the Mid-Latitude Ionosphere (Nizhny Novgorod State Univ., Nizhny Novgorod, 2017) [in Russian].

    Google Scholar 

  4. A. V. Gurevich, Phys.-Usp. 50 (11), 1091 (2007). https://doi.org/10.1070/PU2007v050n11ABEH006212

    Article  Google Scholar 

  5. T. M. Zaboronkova, A. V. Kostrov, A. V. Kudrin, S. V. Tikhonov, A. V. Tronin, and A. A. Shaikin, Sov. Phys. JETP 75 (4), 625 (1992).

    ADS  Google Scholar 

  6. V. O. Rapoport, V. L. Frolov, S. V. Polyakov, G. P. Komrakov, N. A. Ryzhov, G. A. Markov, A. S. Belov, M. Parrot, and J.-L. Rauch, J. Geophys. Res.: Atmos. 115 (A10), A10322 (2010). https://doi.org/10.1029/2010JA015484

  7. I. Y. Zudin, T. M. Zaboronkova, M. E. Gushchin, N. A. Aidakina, S. V. Korobkov, and C. Krafft, J. Geophys. Res.: Space Phys. 124 (6), 4739 (2019). https://doi.org/10.1029/2019JA026637

    Article  ADS  Google Scholar 

  8. V. P. Uryadov, G. G. Vertogradov, and E. G. Vertogradova, RF Patent No. 2518900 (June 10, 2014).

  9. D. Bilitza, L.-A. McKinnell, B. Reinisch, and T. Fuller-Rowell, J. Geod. 85 (12), 909 (2011). https://doi.org/10.1007/S00190-010-0427-X

    Article  ADS  Google Scholar 

  10. S. A. Pulinets, A. D. Legen’ka, T. V. Gaivoronskaya, and V. K. Depuev, J. Atmos. Sol.-Terr. Phys. 65 (16–18), 1337 (2003). https://doi.org/10.1016/J.JASTP.2003.07.011

    Article  ADS  Google Scholar 

  11. E. A. Mareev, Phys.-Usp. 53 (5), 504 (2010). https://doi.org/10.3367/UFNe.0180.201005h.0527

    Article  Google Scholar 

  12. S. Pulinets and D. Davidenko, Adv. Space Res. 53 (5), 709 (2014). https://doi.org/10.1016/j.asr.2013.12.035

    Article  ADS  Google Scholar 

  13. A. V. Kostrov, Plasma Phys. Rep. 46 (4), 443 (2020). https://doi.org/10.1134/S1063780X20040066

    Article  ADS  Google Scholar 

  14. A. A. Petrukovich and O. V. Nikiforov, Raketno-Kosm. Priborostr. Inf. Sist. 3 (4), 22 (2016). https://doi.org/10.17238/issn2409-0239.2016.4.22

    Article  Google Scholar 

  15. R. Yan, Y. Guan, X. Shen, J. Huang, X. Zhang, C. Liu, and D. Liu, Earth Planet. Phys. 2 (6), 479 (2018). https://doi.org/10.26464/epp2018046

    Article  ADS  Google Scholar 

  16. B. Bertotti, Phys. Fluids 4 (8), 1047 (1961). https://doi.org/10.1063/1.1706437

    Article  ADS  Google Scholar 

  17. P. M. E. Decreau, J. Etcheto, K. Knott, A. Pedersen, G. L. Wrenn, and D. T. Young, Space Sci. Rev. 22, 633 (1978). https://doi.org/10.1007/978-94-009-9527-7_21

    Article  ADS  Google Scholar 

  18. P. M. E. Decreau, P. Fergeau, V. Krannosels’kikh, M. Leveque, P. Martin, O. Randriamboarison, F. X. Sene, J. G. Trotignon, P. Canu, and P. B. Mogensen, Space Sci. Rev. 79 (1/2), 157 (1997). https://doi.org/10.1023/A:1004931326404

    Article  ADS  Google Scholar 

  19. R. L. Stenzel and J. M. Urrutia, Rev. Sci. Instrum. 92 (11), 111101 (2021). https://doi.org/10.1063/5.0059344

  20. I. Yu. Zudin, M. E. Gushchin, A. V. Strikovskiy, S.  V.  Korobkov, I. A. Petrova, A. N. Katkov, and V. V. Kochedykov, JETP Lett. 116, 41 (2022). https://doi.org/10.1134/S0021364022601051

    Article  ADS  Google Scholar 

  21. D. J. Peterson, P. Kraus, T. C. Chua, L. Larson, and S. C. Shannon, Plasma Sources Sci. Technol. 26 (9), 095002 (2017). https://doi.org/10.1088/1361-6595/aa80fa

  22. I. G. Kondrat’ev, A. V. Kostrov, A. I. Smirnov, A. V. Strikovskii, and A. V. Shashurin, Plasma Phys. Rep. 28 (11), 900 (2002). https://doi.org/10.1134/1.1520283

    Article  ADS  Google Scholar 

  23. D. V. Yanin, A. V. Kostrov, A. I. Smirnov, and A. V. Strikovskii, Tech. Phys. 53 (1), 129 (2008). https://doi.org/10.1134/S1063784208010246

    Article  Google Scholar 

  24. B. L. Sands, N. S. Siefert, and B. N. Ganguly, Plasma Sources Sci. Technol. 16 (4), 716 (2007). https://doi.org/10.1088/0963-0252/16/4/005

    Article  ADS  Google Scholar 

  25. R. B. Piejak, V. A. Godyak, R. Garner, and B. M. Alexandrovich, J. Appl. Phys. 95 (7), 3785 (2004). https://doi.org/10.1063/1.1652247

    Article  ADS  Google Scholar 

  26. A. G. Galka, D. V. Yanin, A. V. Kostrov, S. E. Priver, and M. S. Malyshev, J. Appl. Phys. 125 (12), 124501 (2019). https://doi.org/10.1063/1.5082169

  27. G. S. Gogna, S. K. Karkari, and M. M. Turner, Phys. Plasmas 21 (12), 123510 (2014). https://doi.org/10.1063/1.4904037

  28. R. L. Stenzel, Rev. Sci. Instrum. 47 (5), 603 (1976). https://doi.org/10.1063/1.1134697

    Article  ADS  Google Scholar 

  29. D. V. Yanin, A. G. Galka, A. V. Kostrov, S. E. Priver, and A. I. Smirnov, Prikl. Fiz., No. 1, 74 (2017).

  30. S. I. Baskakov, Radio Circuits with Distributed Parameters (Vysshaya Shkola, Moscow, 1980) [in Russian].

    Google Scholar 

  31. A. M. Kugushev and N. S. Golubeva, Fundamentals of Radioelectronics (Nonlinear Electromagnetic Processes) (Energiya, Moscow, 1977) [in Russian].

    Google Scholar 

  32. K. Rothammels and A. Krischke, Antennenbuch (Franckh-Kosmos, Stuttgart, 1995), Vol. 1.

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 22-22-20093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Galka.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galka, A.G., Kostrov, A.V. & Malyshev, M.S. Resonance Method for Measurement of the Ionospheric Plasma Density on Board Microsatellites. Tech. Phys. 67, 771–778 (2022). https://doi.org/10.1134/S1063784222110044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222110044

Keywords:

Navigation