Skip to main content
Log in

Fourier Mode Analysis Microstructured Optical Fibers

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We formulate in a nonsimplified form a method for calculating modes of microstructured optical fibers based on the representation of the longitudinal components of field modes at the interfaces of media in the cross section of a fiber by Fourier polynomials in angular coordinates. The Fourier harmonic amplitudes are determined from the homogeneous algebraic system. Its matrix elements are determined based on the Green’s theorem and are represented by the integrals of regular functions. The applicability of the method is limited by the only requirements that the contours of inclusions and of the external boundary of a fiber must be described by single-valued functions of angular coordinates. In the particular case of a circular dielectric waveguide, the method gives an exact analytic solution of the waveguide problem. We have obtained the estimates of the intrinsic convergence of the method relative to the order of Fourier polynomials in the calculation of modes of a dielectric elliptical waveguide and microstructured fibers with elliptical inclusions. It is found that damping factors of the modes are determined to a considerable extent by the internal microstructure and the outer boundary of the fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Lai and S. Jiang, Appl. Comput. Harmon. Anal. 44 (3), 645 (2018). https://doi.org/10.1016/j.acha.2016.06.009

    Article  MathSciNet  Google Scholar 

  2. W. Lu and Y. Y. Lu, J. Lightwave Technol. 30 (11), 1610 (2012). https://doi.org/10.1109/JLT.2012.2189355

    Article  ADS  Google Scholar 

  3. E. Pone, A. Hassani, S. Lacroix, A. Kabashin, and M. Skorobogatiy, Opt. Express 15 (16), 10231 (2007). https://doi.org/10.1364/OE.15.010231

    Article  ADS  Google Scholar 

  4. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, IEEE J. Sel. Top. Quantum Electron. 8 (6), 1225 (2002). https://doi.org/10.1109/JSTQE.2002.806729

    Article  ADS  Google Scholar 

  5. A. B. Sotskii, Theory of Optical Waveguide Elements (Mogilev State Kuleshov Univ., Mogilev, 2011) [in Russian].

    Google Scholar 

  6. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, J. Opt. Soc. Am. B 19 (10), 2322 (2002). https://doi.org/10.1364/JOSAB.19.002322

    Article  ADS  Google Scholar 

  7. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, J. Opt. Soc. Am. B 19 (10), 2331 (2002). https://doi.org/10.1364/JOSAB.19.002331

    Article  ADS  Google Scholar 

  8. A. B. Sotsky and A. Ying, Mogilev State A. Kuleshov Univ. Bull. Ser. B 59 (1), 42 (2022).

    Google Scholar 

  9. A. B. Sotsky, L. I. Sotskaya, V. P. Minkovich, and D.  Monzon-Hernandez, Tech. Phys. 54 (6), 865 (2009). https://doi.org/10.1134/S1063784209060152

    Article  Google Scholar 

  10. M. S. Sicacha, V. P. Minkovich, A. B. Sotsky, A. V. Shilov, L. I. Sotskaya, and E. A. Chudakov, J. Eur. Opt. Soc.–Rapid Publ. 17, 24 (2021). https://doi.org/10.1186/s41476-021-00169-4

    Article  Google Scholar 

  11. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972).

    Google Scholar 

  12. G. Korn and T. Korn, Mathematical Handbook (McGraw-Hill, New York, 1968).

    MATH  Google Scholar 

  13. E. A. Ivanov, Diffraction of Electromagnetic Waves on Two Bodies (Nauka, Minsk, 1968) [in Russian].

    Google Scholar 

  14. C. Yeh and F. I. Shimabukuro, The Essence of Dielectric Waveguides (Springer, New York, 2008).

    Book  Google Scholar 

  15. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

    Google Scholar 

  16. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, Opt. Lett. 26 (8), 488 (2001). https://doi.org/10.1364/OL.26.000488

    Article  ADS  Google Scholar 

  17. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, New York, 1983). https://doi.org/10.1007/978-1-4613-2813-1

    Book  Google Scholar 

  18. M. J. Steel and R. M. Osgood, J. Lightwave Technol. 19 (4), 495 (2001). https://doi.org/10.1109/50.920847

    Article  ADS  Google Scholar 

  19. L. Wang and D. Yang, Opt. Express 15 (14), 8892 (2007). https://doi.org/10.1364/OE.15.008892

    Article  ADS  Google Scholar 

  20. V. P. Minkovich, A. V. Kir’yanov, A. B. Sotsky, and L. I. Sotskaya, J. Opt. Soc. Am. B 21 (6), 1161 (2004). https://doi.org/10.1364/JOSAB.21.001161

    Article  ADS  Google Scholar 

  21. A. B. Sotsky, L. I. Sotskaya, and O. A. Paushkina, Tech. Phys. Lett. 36, 482 (2010). https://doi.org/10.1134/S1063785010050275

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the State research program “1.15 Photonics and Electronics for Innovations” of the Republic of Belarus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Sotsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotsky, A.B., Ponkratov, D.V. & Sotskaya, L.I. Fourier Mode Analysis Microstructured Optical Fibers. Tech. Phys. 67, 725–735 (2022). https://doi.org/10.1134/S1063784222100085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222100085

Keywords:

Navigation