Skip to main content
Log in

Delayed Fluorescence of Molecules on the Surface of a Layered Ferroplasmonic Nanoparticle

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The rate of annihilation delayed fluorescence of organic molecules localized on the surface of a layered spherical nanoparticle is calculated based on an original mathematical model on the assumption that one of the molecules remains stationary, while the other diffusively moves over the particle surface. A composite nanoparticle consists of a ferromagnetic (cobalt, nickel, or magnetite) core and a metal (Au or Ag) plasmon shell. Not only is the external uniform magnetic field into which the particle was placed taken into account, but also a nonuniform anisotropic magnetic field, formed by the ferromagnetic core of the composite, in the outer surface region of the particle. The predominant influence of the structural and geometric parameters of the system (the ratio of core radius to shell thickness) on the delayed fluorescence rate of molecules as a result of a plasmon increase/decrease in the radiative transition probability (more than 30%) is shown. The manifestation of the magnetic factor in the rate of the triplet–triplet annihilation reaction is less pronounced (about 10%). The obtained delayed fluorescence spectra of the layered ferroplasmonic nanocomposite with silver and gold shells demonstrate a clear dependence of the signal amplitude on the shell material and thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. W. Brullot et al., Nanomedicine 8 (5), 559 (2012). https://doi.org/10.1016/j.nano.2011.09.004

    Article  Google Scholar 

  2. E. R. Riva et al., J. Colloid Interface Sc. 502, 201 (2017). https://doi.org/10.1016/j.jcis.2017.04.089

    Article  ADS  Google Scholar 

  3. M. Runowski et al., J. Alloys Compd. 762, 621 (2018). https://doi.org/10.1016/j.jallcom.2018.05.211

    Article  Google Scholar 

  4. S. Baluschev et al., Nano Lett. 5 (12), 2482 (2005). https://doi.org/10.1021/nl0517969

    Article  ADS  Google Scholar 

  5. K. Poorkazem et al., J. Phys. Chem. C 118, 6398 (2014). https://doi.org/10.1021/jp412223m

    Article  Google Scholar 

  6. X. Cao et al., Phys. Chem. Chem. Phys. 17, 14479 (2015). https://doi.org/10.1039/C5CP01876E

    Article  Google Scholar 

  7. L. Wang et al., Nano Lett. 11 (3), 1237 (2011). https://doi.org/10.1021/nl1042243

    Article  ADS  Google Scholar 

  8. A. Mayoral et al., Chem. Commun. 51, 8442 (2015). https://doi.org/10.1039/C5CC00774G

    Article  Google Scholar 

  9. H.-Y. Park et al., Langmuir 23 (17), 9050 (2007). https://doi.org/10.1021/la701305f

    Article  Google Scholar 

  10. X. Gao et al., Sci. Rep. 10, 1365 (2020). https://doi.org/10.1038/s41598-020-58403-x

    Article  ADS  Google Scholar 

  11. H. She et al., J. Mater. Chem. 22, 2757 (2012). https://doi.org/10.1039/C1JM14479K

    Article  Google Scholar 

  12. P. Bhatia et al., Phys. Lett. A 383 (21), 2542 (2019). https://doi.org/10.1016/j.physleta.2019.05.009

    Article  ADS  Google Scholar 

  13. B. Wang et al., Appl. Surf. Sci. 292, 1002 (2014). https://doi.org/10.1016/j.apsusc.2013.12.103

    Article  ADS  Google Scholar 

  14. Sh. Izakura et al., J. Phys. Chem. C 122 (26), 14425 (2018). https://doi.org/10.1021/acs.jpcc.8b05508

    Article  Google Scholar 

  15. T. Sun et al., Chem. Asian J. 13 (4), 373 (2018). https://doi.org/10.1002/asia.201701660

    Article  Google Scholar 

  16. G. Chen et al., Chem. Soc. Rev. 44, 1680 (2015). https://doi.org/10.1039/C4CS00170B

    Article  Google Scholar 

  17. X. Chen et al., Chem. Soc. Rev. 44, 1318 (2015). https://doi.org/10.1039/C4CS00151F

    Article  Google Scholar 

  18. Ch. Duan et al., J. Mater. Chem. B 6, 192 (2018). https://doi.org/10.1039/C7TB02527K

    Article  Google Scholar 

  19. P. P. Neyasov, M. G. Kucherenko, and I. R. Alimbekov, Annihilation delayed fluorescence of organic molecules in nanoreactors with ferromagnetic particles, in Proc. 9th Russian-Japanese Conf. “Chemical Physics of Molecules and Polyfunctional Materials” (IPK Universitet, Orenburg, 2018), p. 38.

  20. M. G. Kucherenko, I. R. Alimbekov, and P. P. Neyasov, Spin-selective cross-annihilation of electronic states of mobile triplet molecules on the surface of a ferromagnetic nanoparticle, in Proc. All-Russian Sci.-Method. Conf. “University Complex as a Regional Center of Education, Science, and Culture” (Orenburg State Univ., Orenburg, 2019), p. 2896 [in Russian].

  21. M. G. Kucherenko and P. P. Neyasov, Khim. Fiz. Mezoskop. 20 (1), 33 (2018).

    Google Scholar 

  22. M. G. Kucherenko and V. M. Nalbandyan, Phys. Procedia 73, 136 (2015). https://doi.org/10.1016/j.phpro.2015.09.134

    Article  ADS  Google Scholar 

  23. V. M. Nalbandyan, E. V. Seliverstova, D. A. Temirbayeva, M. G. Kucherenko, and N. H. Ibrayev, Plasmon-activated processes in a hybrid molecular cluster with a spherical nanoparticle, in Proc. 11th Int. Conf. “Chaos and Structures in Nonlinear Systems” (Karaganda State Univ., Karaganda, Kazakhstan, 2018), p. 128.

  24. M. G. Kucherenko, I. R. Alimbekov, and P. P. Neyasov, Features of annihilation delayed fluorescence of organic molecules near a spherical ferroplasmonic nanocomposite, in Proc. All-Russian Sci.-Method. Conf. “University Complex as a Regional Center of Education, Science, and Culture” (Orenburg State Univ., Orenburg, 2020), p. 2222.

  25. V. V. Klimov, Nanoplasmonics (Pan Stanford, Singapore, 2014).

    Book  Google Scholar 

  26. G. V. Meledin and V. S. Cherkasskii, Electrodynamics in Problems. Part 1: Electrodynamics of Particles and Fields. Chap. 5: Magnetostatics in Matter (Novosibirsk State Univ., Novosibirsk, 2003) [in Russian].

  27. M. G. Kucherenko and R. N. Dusembaev, Chem. Phys. Lett. 487, 58 (2010).

    Article  ADS  Google Scholar 

  28. P. W. Atkins and G. T. Evans, Mol. Phys. 29 (3), 921 (1975).

    Article  ADS  Google Scholar 

  29. M. G. Kucherenko and V. M. Nalbandyan, Opt. Spectrosc. 128 (11), 1910 (2020).

    Article  ADS  Google Scholar 

  30. P. P. Neyasov, I. R. Alimbekov, and M. G. Kucherenko, Formation of pulses of cross-annihilation delayed fluorescence of molecules in nanoreactors with magnetite particles, in Proc. 7th Int. Conf. on Photonics and Informatation Optics (Nat. Res. Nucl. Univ. MEPHI, Moscow, 2019), p. 467.

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of research project no. FSGU-2020-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Alimbekov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucherenko, M.G., Alimbekov, I.R. & Neyasov, P.P. Delayed Fluorescence of Molecules on the Surface of a Layered Ferroplasmonic Nanoparticle. Tech. Phys. 67, 632–643 (2022). https://doi.org/10.1134/S106378422209002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422209002X

Keywords:

Navigation