Skip to main content
Log in

Numerical Study of the Effect of the Type of Refractory Particles on Product Formation under Conditions of Bulk Synthesis

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Methods of combustion for the synthesis of composites are widely used in modern chemical and metallurgical technologies. According to experimental data, the most homogeneous product can be obtained by bulk synthesis. Such modes are often used to produce composite materials. However, the high reaction rate of bulk synthesis significantly complicates the control of the formation of the product. One way to reduce the synthesis temperature consists in introducing inert particles into the reaction mixture. Additionally, the heating rate can be changed by changing the reactor wall thickness. However, the specifics of the conjugate heat exchange of the reaction mixture with the reactor walls under various synthesis conditions are rarely analyzed in publications. To demonstrate the role of these factors, a two-dimensional model of bulk synthesis of a composite from pure elements with the addition of inert particles is proposed in this work. The heating of the reactor walls by thermal radiation from a device whose temperature varies according to a given law is taken into account. The heat contact between the reactor walls and the powder mixture is assumed as ideal. The chemical reactions are described by a summary reaction scheme that corresponds to the synthesis of Ni3Al from elements 3Ni+Al. The kinetic law takes into account the retardation of the reaction by the product layer and contains corresponding parameter. The effective thermal and physical properties of the mixture in the reactor depend on the properties of the initial components and the volume fraction of inert particles. The proposed model is implemented numerically. Process dynamics for WC, TiC, and Al2O3 particles is analyzed. Steel is used as the material of the reactor walls. It is established that the synthesis process in the bulk is inhomogeneous, that is directly related to the conjugate heat exchange conditions. In spite of this, for the chosen set of reactor parameters and particle fraction, the result is the same: there are almost no unspent reagents in the final products. The dynamics of temperature variation in different parts of the reactor may not correspond to the classical thermal explosion. This indicates that the transformation of the reagents into the product occurs in two stages. The first stage ends with an incomplete transformation. Then, due to the heat stored in the compact and in the reactor walls, the reactions are accelerated again, which leads to the formation of a final composite. Changing the fraction of inert particles in the mixture has an ambiguous effect on the dynamics of synthesis that is due to the thermal and physical properties changing with the fraction of particles and a decrease in the total heat release in the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. G. Merzhanov, Ceram. Int. 21 (5), 371 (1995). https://doi.org/10.1016/0272-8842(95)96211-7

    Article  Google Scholar 

  2. A. S. Rogachev and A. S. Mukas’yan, Combustion for the Synthesis of Materials: An Introduction to Structural Macrokinetics (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  3. E. A. Levashov, A. S. Rogachev, V. I. Yukhvid, and I. P. Borovinskaya, Physicochemical and Technological Principles of Self-Propagating High-Temperature Synthesis (BINOM, Moscow, 1999) [in Russian].

    Google Scholar 

  4. X. Zhu, T. Zhang, D. Marchant, and V. Morris, Mater. Sci. Eng., A 528 (3), 1251 (2011). https://doi.org/10.1016/j.msea.2010.10.002

    Article  Google Scholar 

  5. D. Siemiaszko, S. Jóźwiak, M. Czarnecki, and Z. Bojar, Intermetallics 41, 16 (2013). https://doi.org/10.1016/j.intermet.2013.03.015

    Article  Google Scholar 

  6. V. V. Barzykin, V. T. Gontkovskaya, A. G. Merzhanov, and S. I. Khudyaev, Prikl. Mekh. Tekh. Fiz., No. 3, 118 (1964).

  7. A. G. Merzhanov and A. G. Strunina, Combust., Explos. Shock Waves 1, 43 (1965). https://doi.org/10.1007/BF00757151

    Article  Google Scholar 

  8. H.-Y. Lee, A. Ikenaga, S.-H. Kim, et al., Intermetallics 15 (8), 1050 (2007). https://doi.org/10.1016/j.intermet.2006.12.007

    Article  Google Scholar 

  9. L. Thiers, A. S. Mukasyan, and A. Varma, Combust. Flame 131 (1–2), 198 (2002). https://doi.org/10.1016/S0010-2180(02)00402-9

    Article  Google Scholar 

  10. M. P. Bondar’, M. A. Korchagin, and E. S. Obodovskii, Combust., Explos. Shock Waves 46 (1), 111 (2010). https://doi.org/10.1007/s10573-010-0018-4

    Article  Google Scholar 

  11. O. V. Lapshin, E. N. Boyangin, and V. E. Ovcharenko, Combust., Explos. Shock Waves 41 (1), 64 (2005). https://doi.org/10.1007/s10573-005-0007-1

    Article  Google Scholar 

  12. J. Yuan et al., J. Alloys Compd. 693, 70 (2017). https://doi.org/10.1016/j.jallcom.2016.09.022

    Article  Google Scholar 

  13. J. Yuan, X. Zhang, C. Zhang, et al., Ceram. Int. 42 (9), 10992 (2016). https://doi.org/10.1016/j.ceramint.2016.03.237

    Article  Google Scholar 

  14. V. E. Ovcharenko and E. N. Boyangin, Combust., Explos. Shock Waves 35 (4), 407 (1999). https://doi.org/10.1007/BF02674472

    Article  Google Scholar 

  15. M. B. Rahaei, Adv. Powder Technol. 30, 1025 (2019). https://doi.org/10.1016/j.apt.2019.02.017

    Article  Google Scholar 

  16. X. Zhu, T. Zhang, D. Marchant, and V. Morris, J. Eur. Ceram. Soc. 30 (13), 2781 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.06.002

    Article  Google Scholar 

  17. A. A. Shokati, N. Parvin, N. Sabzianpour, et al., J. Alloys Compd. 549, 141 (2013). https://doi.org/10.1016/j.jallcom.2012.08.024

    Article  Google Scholar 

  18. W. Xia and M. Zarezadeh Mehrizi, Ceram. Int. 47, 26863 (2021). https://doi.org/10.1016/j.ceramint.2021.06.095

    Article  Google Scholar 

  19. M. D. Grapes, M. K. Santala, G. H. Campbell, D. A. LaVan, and T. P. Weihs, Thermochim. Acta 658, 72 (2017). https://doi.org/10.1016/j.tca.2017.10.018

    Article  Google Scholar 

  20. A. Biswas and S. K. Roy, Acta Mater. 52 (2), 257 (2004). https://doi.org/10.1016/j.actamat.2003.08.018

    Article  ADS  Google Scholar 

  21. A. Biswas, S. K. Roy, K. R. Gurumurthy, N. Prabhu, and S. Banerjee, Acta Mater. 50 (4), 757 (2002). https://doi.org/10.1016/S1359-6454(01)00387-1

    Article  ADS  Google Scholar 

  22. K. Bochenek and M. Basista, Prog. Aerosp. Sci. 79, 136 (2015). https://doi.org/10.1016/j.paerosci.2015.09.003

    Article  Google Scholar 

  23. C. Curfs, X. Turrillas, G. B. M. Vaughan, A. E. Terry, Å. Kvick, and M. A. Rodríquez, Intermetallics 15 (9), 1163 (2007). https://doi.org/10.1016/j.intermet.2007.02.00

    Article  Google Scholar 

  24. K. Morsi, Mater. Sci. Eng., A 299 (1–2), 1 (2001). https://doi.org/10.1016/S0921-5093(01)01270-9

    Article  Google Scholar 

  25. G. Xanthopoulou, A. Marinou, G. Vekinis, A. Lekatou, and M. Vardavoulias, Coatings 4, 231 (2014). https://doi.org/10.3390/coatings4020231

    Article  Google Scholar 

  26. E. T. Kubaski, O. M. Cintho, and J. D. T. Capocchi, Powder Technol. 214 (1), 77 (2011). https://doi.org/10.1016/j.powtec.2011.07.038

    Article  Google Scholar 

  27. I. Volyanski, I. V. Shishkovsky, I. Yadroitsev, V. I. Shcherbakov, and Yu. G. Morozov, Inorg. Mater. 52 (6), 566 (2016). https://doi.org/10.1134/S0020168516060170

    Article  Google Scholar 

  28. R. Rosa, P. Veronesi, G. Poli, C. Leonelli, A. B. Corradi, A. Casagrande, and I. Boromei, Surf. Eng. 28, 91 (2012). https://doi.org/10.1179/1743294411Y.0000000046

    Article  Google Scholar 

  29. A. Maznoy, A. Kirdyashkin, V. Kitler, and A. Solovyev, J. Alloys Compd. 697, 114 (2017). https://doi.org/10.1016/j.jallcom.2016.11.350

    Article  Google Scholar 

  30. A. Školakova, J. Körberova, P. Kratochvíl, P. Salvetr, D. Deduytsche, and P. Novak, Mater. Chem. Phys. 271 (5), 124941 (2021). https://doi.org/10.1016/j.matchemphys.2021.124941

  31. O. V. Lapshin and V. E. Ovcharenko, Combust., Explos. Shock Waves 32 (3), 299 (1996). https://doi.org/10.1007/BF01998460

    Article  Google Scholar 

  32. O. B. Kovalev and V. A. Neronov, Combust., Explos. Shock Waves 40 (2), 172 (2004). https://doi.org/10.1023/B:CESW.0000020139.07061.9e

    Article  Google Scholar 

  33. V. Yu. Filimonov, K. B. Koshelev, and A. A. Sytnikov, Combust. Flame 185, 93 (2017). https://doi.org/10.1016/j.combustflame.2017.06.020

    Article  Google Scholar 

  34. K. B. Koshelev, Izv. Tomsk. Politekh. Univ. 312 (2), 44 (2008).

    Google Scholar 

  35. S. I. Khudyaev, Combust., Explos. Shock Waves 39 (6), 644 (2003). https://doi.org/10.1023/B:CESW.0000007676.33964.03

    Article  Google Scholar 

  36. O. V. Lapshin and V. K. Smolyakov, Russ. J. Phys. Chem. B 9, 255 (2015). https://doi.org/10.1134/S1990793115020086

    Article  Google Scholar 

  37. V. K. Smolyakov and O. V. Lapshin, Combust., Explos. Shock Waves 47 (3), 314 (2011). https://doi.org/10.1134/S0010508211030087

    Article  Google Scholar 

  38. O. V. Lapshin and V. K. Smolyakov, Combust., Explos. Shock Waves 53 (5), 548 (2017). https://doi.org/10.1134/S0010508217050070

    Article  Google Scholar 

  39. N. Bukrina and A. Knyazeva, High Temp. Mater. Processes 24 (1), 65 (2020). https://doi.org/10.1615/HighTempMatProc.2020033859

    Article  Google Scholar 

  40. N. Bukrina and A. Knyazeva, Int. J. Heat Mass Transfer 152, 119553 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119553

  41. N. V. Bukrina and A. G. Knyazeva, Russ. Phys. J. 63, 1163 (2020). https://doi.org/10.1007/s11182-020-02163-8

    Article  Google Scholar 

  42. V. E. Ovcharenko et al., Mater. Sci. Forum 906, pp. 95 (2017). https://doi.org/10.4028/www.scientific.net/MSF.906.95

    Article  Google Scholar 

  43. V. S. Chirkin, Thermophysical Properties of Nuclear Materials (Atomizdst, Moscow, 1967) [in Russian].

    Google Scholar 

  44. Yu. E. Sheludyak, L. Ya. Kashporov, L. A. Malinin, and V. N. Tsalkov, Thermophysical Properties of Combustible System Components, Ed. by N. A. Silin (Inform TEI, Moscow, 1992) [in Russian].

    Google Scholar 

  45. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (CRC Press, Boca Raton, 1996).

    Google Scholar 

  46. A. Bakinovskii, A. G. Knyazeva, M. G. Krinitcyn, et al., Int. J. Self-Propag. High-Temp. Synth. 28 (4), 245 (2019). https://doi.org/10.3103/S1061386219040034

    Article  Google Scholar 

Download references

Funding

This study was supported by the State assignment for the Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences (topic no. FWRW-2019-0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Knyazeva.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazeva, A.G., Bukrina, N.V. Numerical Study of the Effect of the Type of Refractory Particles on Product Formation under Conditions of Bulk Synthesis. Tech. Phys. 67, 625–631 (2022). https://doi.org/10.1134/S1063784222090018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222090018

Keywords:

Navigation