Skip to main content
Log in

Molecular Dynamics Investigation of the Temperature Dependences of Nickel Theoretical Strength and Shear Modulus

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Stress–strain diagrams for a pure nickel crystal have been studied versus temperature, strain rate, and size of a simulated computational cell under shear along the 〈111〉 direction by the molecular dynamics method. Shear in the model has been simulated by displacing atoms in the upper and lower parts of the computational cell in opposite directions. During the computer experiment, these parts move as a whole. For other boundaries of the computational cell, periodic boundary conditions have been set. Interatomic interactions have been described in terms of Cleri–Rosato many-particle potentials constructed in the tight-binding approximation. It has been shown that the shear rate less than 20 m/s has a weak influence on the theoretical strength at constant temperature. As the temperature grows, dislocations and plastic deformation in perfect crystals arise at lower strains. In addition, the temperature significantly influences the slope of the stress-strain curves in the elastic region because of the temperature dependence of the shear modulus. The temperature dependences of the theoretical strength and shear modulus obtained in this study are nearly linear, which agrees with data of real experiments. The shear modulus at normal temperature is also close to the reference value. At the given loading mode (shear along the 〈111〉 direction), dislocations arise in two slip systems. At sufficiently high strains, dislocations from one slip system participate in deformation twinning. Those from the other system are stopped by these twins, which, along with grain boundaries, are known as effective barriers for moving dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. A. Shtremel’, Fracture, Part 1: Fracture of Material (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  2. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953).

    MATH  Google Scholar 

  3. J. Guo, B. Wen, R. Melnik, Sh. Yao, and T. Li, Diamond Relat. Mater. 20, 551 (2011).

    Article  ADS  Google Scholar 

  4. T. Tachibana, H. Furuya, and M. Koizumi, J. Nucl. Sci. Technol. 13, 497 (1976).

    Article  Google Scholar 

  5. D. Cereceda, M. Diehl, F. Roters, D. Raabe, J. M. Perlado, and J. Marian, Int. J. Plast. 78, 242 (2016).

    Article  Google Scholar 

  6. J. Fridel, Dislocations (Pergamon, Oxford, 1964).

    Google Scholar 

  7. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968).

    MATH  Google Scholar 

  8. A. D. Evstifeev, A. A. Gruzdkov, and Yu. V. Petrov, Tech. Phys. 58 (7), 989 (2013). https://doi.org/10.1134/S1063784213070086

    Article  Google Scholar 

  9. F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).

    Article  ADS  Google Scholar 

  10. C. Chen, F. Zhang, H. Xu, Z. Yang, and G. M. Poletaev, J. Mater. Sci. 57, 1833 (2022).

    Article  ADS  Google Scholar 

  11. G. M. Poletaev, J. Exp. Theor. Phys. 133 (4), 455 (2021).

    Article  ADS  Google Scholar 

  12. G. M. Poletaev and I. V. Zorya, J. Exp. Theor. Phys. 131 (3), 432 (2020).

    Article  ADS  Google Scholar 

  13. G. M. Poletaev and I. V. Zorya, Tech. Phys. Lett. 46 (6), 575 (2020).

    Article  ADS  Google Scholar 

  14. G. M. Poletaev and M. D. Starostenkov, Phys. Solid State 51 (4), 727 (2009).

    Article  ADS  Google Scholar 

  15. K. A. Bukreeva, A. M. Iskandarov, S. V. Dmitriev, R. R. Mulyukov, and Y. Umeno, Phys. Solid State 56 (3), 423 (2014).

    Article  ADS  Google Scholar 

  16. P.-T. Li, Y.-Q. Yang, Z. Xia, X. Luo, N. Jin, Y. Gao, and G. Liu, RSC Adv. 7, 48315 (2017).

    Article  ADS  Google Scholar 

  17. V. S. Krasnikov, A. Y. Kuksin, A. E. Mayer, and A. V. Yanilkin, Phys. Solid State 52 (7), 1386 (2010).

    Article  ADS  Google Scholar 

  18. F. Cardarelli, “Less common nonferrous metals,” in Materials Handbook (Springer, Cham, 2018), pp. 317–695.

    Book  Google Scholar 

  19. Z.-H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn, Acta Mater. 56, 1126 (2008).

    Article  ADS  Google Scholar 

  20. M. Chassagne, M. Legros, and D. Rodney, Acta Mater. 59, 1456 (2011).

    Article  ADS  Google Scholar 

  21. N. V. Malyar, B. Grabowski, G. Dehm, and C. Kirchlechner, Acta Mater. 161, 412 (2018).

    Article  ADS  Google Scholar 

  22. Y. Liang, X. Yang, M. Gong, G. Liu, Q. Liu, and J. Wang, Comput. Mater. Sci. 161, 371 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Poletaev.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletaev, G.M., Ponomarenko, E.D., Podorova, D.K. et al. Molecular Dynamics Investigation of the Temperature Dependences of Nickel Theoretical Strength and Shear Modulus. Tech. Phys. 67, 597–600 (2022). https://doi.org/10.1134/S1063784222080072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222080072

Keywords:

Navigation