Skip to main content
Log in

Simulation of Molecular-Dynamics Processes in 2D and 3D Crystalline Structures

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We report on the results of mathematical simulation of molecular-dynamics processes in 2D and 3D crystalline structures using the Lennard–Jones potential in the MatLab software package. In the theoretical part, differential equations for simulation, their initial and boundary conditions, as well as the difference approximation are described. As the method of simulation, we have chosen the principle of molecular-dynamics simulation using one of pair potentials. In the part devoted to applications, we have simulated the chaotic motion (displacement) of atoms in 2D and 3D crystal lattices. The distribution over the calculation cell and the emergence of atoms beyond its limits are demonstrated. The relation between the binding energies in real metals and in the calculation model is determined. The interaction potential is calculated and turned out to be positive. The amplitude, phase, and frequency characteristics that have passed through the stability test have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. N. Semenova, A. S. Semenov, and S. V. Dmitriev, Fundam. Probl. Sovr. Materialoved. 16 (4), 501 (2019).

    Google Scholar 

  2. S. A. Shcherbinin, M. N. Semenova, A. S. Semenov, E. A. Korznikova, G. M. Chechin, and S. V. Dmitriev, Phys. Solid State 61 (11), 2139 (2019). https://doi.org/10.1134/S1063783419110313

    Article  ADS  Google Scholar 

  3. D. S. Ryabov, G. M. Chechin, A. Upadhyaya, E. A. Korznikova, V. I. Dubinko, and S. V. Dmitriev, Nonlinear Dyn. 102 (4), 2793 (2020).

    Article  Google Scholar 

  4. E. A. Korznikova, A. Y. Morkina, M. Singh, A. M. Krivtsov, V. A. Kuzkin, V. A. Gani, Y. V. Bebikhov, and S. V. Dmitriev, Eur. Phys. J. B 93 (7), 123 (2020).

    Article  ADS  Google Scholar 

  5. A. S. Semenov, R. T. Murzaev, Yu. V. Bebikhov, A. A. Kudreyko, and S. V. Dmitriev, Pis’ma Mater. 10 (2), 185 (2020).

    Google Scholar 

  6. M. Singh, A. Y. Morkina, E. A. Korznikova, V. I. Dubinko, D. A. Terentiev, D. Xiong, O. B. Naimark, V. A. Gani, and S. V. Dmitriev, J. Nonlinear Sci. 31 (1), 12 (2021).

    Article  ADS  Google Scholar 

  7. R. T. Murzaev, R. I. Babicheva, K. Zhou, E. A. Korznikova, S. Y. Fomin, V. I. Dubinko, and S. V. Dmitriev, Eur. Phys. J. B 89 (7), 168 (2016).

    Article  ADS  Google Scholar 

  8. M. Semenova, A. Vasileva, G. Lukina, and U. Popova, Lect. Notes Civ. Eng. 180, 417 (2022).

    Article  Google Scholar 

  9. G. M. Poletaev, M. D. Starostenkov, I. V. Zorya, and M. A. Il’ina, Russ. Metall. (Metally) 2019, 927 (2019). https://doi.org/10.1134/S0036029519100227

    Article  ADS  Google Scholar 

  10. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov, Yu. V. Bebikhov, and R. Yu. Rakitin, Russ. Metall. (Metally) 2020, 271 (2020). https://doi.org/10.1134/S0036029520040217

    Article  ADS  Google Scholar 

  11. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  12. K. A. Krylova, E. A. Korznikova, A. S. Semenov, D. V. Bachurin, and S. V. Dmitriev, Eur. Phys. J. B 93 (2), 23 (2020).

    Article  ADS  Google Scholar 

  13. R. T. Murzaev, S. V. Dmitriev, A. S. Semenov, A. I. Potekaev, M. D. Starostenkov, P. V. Zakharov, and V. V. Kulagina, Russ. Phys. J. 64 (2), 293 (2021). https://doi.org/10.1007/s11182-021-02328-z

    Article  Google Scholar 

  14. G. M. Poletaev, Yu. V. Bebikhov, A. S. Semenov, and M. D. Starostenkov, Pis’ma Mater. 11 (4), 438 (2021).

    Google Scholar 

  15. Y. V. Bebikhov and S. V. Dmitriev, IOP Conf. Ser.: Mater. Sci. Eng. 1008 (1), 012066 (2020).

  16. J. E. Jones, Proc. R. Soc. A 106, 463 (1924).

    ADS  Google Scholar 

  17. I. R. Sunagatova, A. M. Subkhangulova, M. N. Semenova, D. I. Borisov, A. S. Semenov, and S. V. Dmitriev, IOP Conf. Ser.: Mater. Sci. Eng. 1008, 012073 (2020).

  18. X.-S. Qian, Physical Mechanics (Mir, Moscow, 1965) [in Russian].

  19. O. V. Bachurina, R. T. Murzaev, A. S. Semenov, E. A. Korznikova, and S. V. Dmitriev, Phys. Solid State 60 (5), 989 (2018). https://doi.org/10.1134/S1063783418050049

    Article  ADS  Google Scholar 

  20. P. S. Tatarinov, V. D. Yakovleva, D. Ch. Kim, A. A. Egorova, E. A. Korznikova, and A. S. Semenov, Collection of Laboratory Works on the Section “Mechanics” of the Course “Physics” (Sputnik, Moscow, 2021) [in Russian].

    Google Scholar 

  21. A. S. Semenov, M. N. Semenova, I. A. Yakushev, and Yu. V. Bebikhov, Program of Mathematical Modeling of Physical Processes in Metals and Ordered Alloys, Certificate of Registration of the Computer Program No. 2021615775 of April 13, 2021.

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 22-22-00810, https://rscf.ru/en/project/22-22-00810/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Semenov.

Ethics declarations

The authors declare that there is no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, A.S., Semenova, M.N., Bebikhov, Y.V. et al. Simulation of Molecular-Dynamics Processes in 2D and 3D Crystalline Structures. Tech. Phys. 67, 538–542 (2022). https://doi.org/10.1134/S1063784222070131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222070131

Keywords:

Navigation