Skip to main content
Log in

Spark Plasma Sintering of Al2O3–SiC Ceramics. Study of the Microstructure and Properties

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The features of spark plasma sintering of submicron Al2O3 powders with different contents (0, 0.5, 1.5, 5 vol %) of β-SiC nanoparticles have been studied. The microstructure and hardness of Al2O3 + 5 vol % SiC ceramics obtained by sintering Al2O3 powders with β-SiC particles of various types (nanoparticles, submicron particles, fibers) have been studied. Sintering was carried out at heating rates Vh from 10 to 700°C/min. The sintering process of Al2O3–SiC ceramics with low heating rates (Vh = 10–50°C/min) has a complex three-stage character, with a flat area in the temperature range of 1200–1300°C. At high heating rates (Vh > 250°C/min), the usual three-stage character of sintering is observed. The analysis of temperature dependences of compaction was carried out using the Young–Cutler model. It was found that the kinetics of powder sintering is limited by the intensity of grain boundary diffusion. It is shown that the dependence of the hardness of Al2O3–SiC ceramics on Vh has a nonmonotonic character, with a maximum. In the case of pure alumina, an increase in Vh leads to a monotonic decrease in hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Z. Yin, S. Yan, J. Ye, Z. Zhu, and J. Yuan, Ceram. Int. 45 (13), 16113 (2019). https://doi.org/10.1016/j.ceramint.2019.05.128

    Article  Google Scholar 

  2. E. Gevorkyan, A. Mamalis, R. Vovk, Z. Semiatkowkski, D. Morozow, V. Nerubatskyi, and O. Morozova, J. Instrum. 16, P10015 (2021). https://doi.org/10.1088/1748-0221/16/10/P10015

  3. M. S. Boldin, N. N. Berendeev, N. V. Melekhin, A. A. Popov, A. V. Nokhrin, and V. N. Chuvil’deev, Ceram. Int. 47 (18), 25201 (2021). https://doi.org/10.1016/j.ceramint.2021.06.066

    Article  Google Scholar 

  4. J. H. Chae, K. H. Kim, Y. H. Choa, J. Matsushita, J.‑W. Yoon, and K. B. Shim. J. Alloys Compd. 413 (1–2), 259 (2006). https://doi.org/10.1016/j.jallcom.2005.05.049

    Article  Google Scholar 

  5. I. Monohjimoh, M. A. Hussein, and N. Al-Aqeeli, Nanomaterials 9 (1), 86 (2019). https://doi.org/10.3390/nano9010086

    Article  Google Scholar 

  6. X. L. Shi, F. M. Xu, Z. J. Zhang, Y. L. Dong, Y. Tan, L. Wang, and J. M. Yang, Mater. Sci. Eng., A 527 (18–19), 4646 (2010). https://doi.org/10.1016/j.msea.2010.03.035

    Article  Google Scholar 

  7. Y. L. Dong, F. M. Xu, X. L. Shi, C. Zhang, Z. J. Zhang, J. M. Yang, and Y. Tan, Mater. Sci. Eng., A 504 (1–2), 49 (2009). https://doi.org/10.1016/j.msea.2008.10.021

    Article  Google Scholar 

  8. J. Liu, Z. Li, H. Yan, and K. Jiang, Adv. Eng. Mater. 16 (9), 1111 (2014). https://doi.org/10.1002/adem.201300536

    Article  Google Scholar 

  9. Y. Xu, A. Zangvil, and A. Kerber, J. Eur. Ceram. Soc. 17 (7), 921 (1997). https://doi.org/10.1016/S0955-2219(96)00164-1

    Article  Google Scholar 

  10. S. Gustafsson, L. K. L. Falk, E. Lidén, and E. Carlström, Ceram. Int. 34 (7), 1609 (2008). https://doi.org/10.1016/j.ceramint.2007.05.005

    Article  Google Scholar 

  11. D. Galusek, R. Klement, J. Sedláček, M. Balog, C. Fasel, J. Zhang, M. A. Crimp, and R. Riedel, J. Eur. Ceram. Soc. 31 (1–2), 111 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.09.013

    Article  Google Scholar 

  12. C. C. Anya and S. G. Roberts, J. Eur. Ceram. Soc. 17 (4), 565 (1997). https://doi.org/10.1016/S0955-2219(96)00092-1

    Article  Google Scholar 

  13. M. Tokita, Ceramics 4 (2), 160 (2021). https://doi.org/10.3390/ceramics4020014

    Article  Google Scholar 

  14. L. Gao, H. Z. Wang, J. S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa, and S. D. D. L. Torre, J. Eur. Ceram. Soc. 19 (5), 609 (1999). https://doi.org/10.1016/S0955-2219(98)00232-5

    Article  Google Scholar 

  15. I. Álvarez, R. Torrecillas, W. Solis, P. Peretyagin, and A. Fernández, Ceram. Int. 42 (15), 17248 (2016). https://doi.org/10.1016/j.ceramint.2016.08.019

    Article  Google Scholar 

  16. V. N. Chuvil’deev, M. S. Boldin, Ya. G. Dyatlova, V. I. Rumyantsev, and S. S. Ordan’yan, Russ. J. Inorg. Chem. 60 (8), 987 (2015). https://doi.org/10.1134/S0036023615080057

    Article  Google Scholar 

  17. M. N. Rahaman, Ceramic Processing and Sintering (Marcel Dekker, New York, 2003).

    Google Scholar 

  18. W. S. Young and I. B. Culter, J. Am. Ceram. Soc. 53 (12), 659 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb12036.x

    Article  Google Scholar 

  19. M. S. Boldin, A. A. Popov, E. A. Lantsev, A. V. Nokhrin, and V. N. Chuvil’deev, Materials 15 (6), 2167 (2022). https://doi.org/10.3390/ma15062167

    Article  ADS  Google Scholar 

  20. H. J. Frost and M. F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon, Oxford, 1982).

    Google Scholar 

  21. E. A. Lantsev, N. V. Malekhonova, Yu. V. Tsvetkov, Yu. V. Blagoveshchensky, V. N. Chuvil’deev, A. V. Nokhrin, M. S. Boldin, P. V. Andreev, K. E. Smetanina, and N. V. Isaeva, Inorg. Mater.: Appl. Res. 12 (3), 650 (2021). https://doi.org/10.1134/S2075113321030242

    Article  Google Scholar 

  22. A. Bokov, A. Shelyug, and A. Kurlov, J. Eur. Ceram. Soc. 41 (12), 5801 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.05.007

    Article  Google Scholar 

  23. D. Fan, L.-Q. Chen, and S.-P. P. Chen, J. Am. Ceram. Soc. 81 (3) 526 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02370.x

    Article  Google Scholar 

  24. V. I. Betekhtin, A. G. Kadomtsev, A. Yu. Kipyatkova, and A. M. Glezer, Phys. Solid State 40 (1), 74 (1998). https://doi.org/10.1134/1.1130237

    Article  ADS  Google Scholar 

  25. V. N. Chuvil’deev, Nonequilibrium Grains Boundaries in Metals. Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  26. A. B. Mazitov and A.R. Oganov, Zap. Ross. Mineral. O-va 150 (5), 92 (2021). https://doi.org/10.31857/S086960552105004X

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 20-73-10113. The study by transmission electron microscopy was performed on the equipment of the Core Facilities Center “Materials Science and Metallurgy” of National University of Science and Technology “MISiS”, project no. 075-15-2021-696 of the Russian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Boldin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldin, M.S., Popov, A.A., Murashov, A.A. et al. Spark Plasma Sintering of Al2O3–SiC Ceramics. Study of the Microstructure and Properties. Tech. Phys. 67, 456–467 (2022). https://doi.org/10.1134/S1063784222070118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222070118

Keywords:

Navigation