Skip to main content
Log in

Low-Frequency Spectrum of the Gyrotropic Modes of a Finite Chain of Interacting Ferromagnetic Disks

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The problem of the frequency spectrum of collective gyrotropic modes in a finite linear chain of magnetostatically interacting ferromagnetic disks has been considered. It has been shown that by analyzing the frequency spectrum, one can derive information about the magnetization eddy state for each of the nanodisks in the chain. The feasibility of recording the frequency spectrum as a tool for data readout in magnetic memory devices has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. N. Zamay, V. S. Prokopenko, S. S. Zamay, K. A. Lukyanenko, O. S. Kolovskaya, V. A. Orlov, G. S. Zamay, R. G. Galeev, A. A. Narodov, and A. S. Kichkailo, Nanomaterials 11, 1459 (2021). https://doi.org/10.3390/nano11061459

    Article  Google Scholar 

  2. M. Goiriena-Goikoetxea, D. Munoz, I. Orue, M. L. Fernandez-Gubieda, J. Bokor, A. Muela, and A. Garcia-Arribas, Appl. Phys. Rev. 7, 011306 (2020). https://doi.org/10.1063/1.5123716

  3. G. A. Meshkov, A. P. Pyatakov, A. D. Belanovsky, K. A. Zvezdin, and A. S. Loginov, J. Magn. Soc. Jpn. 36, 46 (2012). https://doi.org/10.3379/msjmag.1108M009

    Article  Google Scholar 

  4. S. Luo and L. You, APL Mater. 9, 050901 (2021). https://doi.org/10.1063/5.0042917

  5. Z. R. Yan, Y. Z. Liu, Y. Guang, K. Yue, J. F. Feng, R. K. Lake, G. Q. Yu, and X. F. Han, Phys. Rev. Appl. 15, 064004 (2021). https://doi.org/10.1103/PhysRevApplied.15.064004

  6. E. R. P. Novais, P. Landeros, A. G. S. Barbosa, M. D. Martins, F. Garcia, and A. P. Guimaraes, J. Appl. Phys. 110, 053917 (2011). https://doi.org/10.1063/1.3631081

  7. K. Y. Guslienko, J. Magn. 24 (4), 549 (2019). https://doi.org/10.4283/JMAG.2019.24.4.549

    Article  Google Scholar 

  8. B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Faehnle, H. Brueckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Schuetz, Nature 444, 461 (2006).

    Article  ADS  Google Scholar 

  9. V. L. Mironov, B. A. Gribkov, A. A. Fraerman, S.  A.  Gusev, S. N. Vdovichev, I. R. Karetnikova, I. M. Nefedov, and I. A. Shereshevsky, J. Magn. Magn. Mater. 312, 153 (2007).

    Article  ADS  Google Scholar 

  10. K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, and T. Ono, Nat. Mater. 6, 269 (2007).

    Article  ADS  Google Scholar 

  11. S.-K. Kim, Y.-S. Choi, K.-S. Lee, K. Y. Guslienko, and D.-E. Jeong, Appl. Phys. Lett. 91, 082506 (2007).

  12. R. V. Gorev, E. V. Skorokhodov, and V. L. Mironov, Phys. Solid State 62 (9), 1513 (2020). https://doi.org/10.1134/S1063783420090085

    Article  ADS  Google Scholar 

  13. P. D. Kim, V. A. Orlov, R. Yu. Rudenko, A. V. Kobyakov, A. V. Lukyanenko, V. S. Prokopenko, I. N. Orlova, and T. V. Rudenko, Eur. Phys. J. B 91, 90 (2018). https://doi.org/10.1140/epjb/e2018-90006-0

    Article  ADS  Google Scholar 

  14. R. Ishikawa, M. Goto, H. Nomura, and Y. Suzuki, Appl. Phys. Lett. 119, 072402 (2021). https://doi.org/10.1063/5.0053797

  15. E. G. Ekomasov, S. V. Stepanov, K. A. Zvezdin, N. G. Pugach, and G. I. Antonov, Phys. Met. Metallogr. 122 (3), 197 (2021). https://doi.org/10.1134/S0031918X21030054

    Article  ADS  Google Scholar 

  16. P. D. Kim, V. A. Orlov, R. Yu. Rudenko, V. S. Prokopenko, I. N. Orlova, and A. V. Kobyakov, J. Magn. Magn. Mater. 440, 171 (2017). https://doi.org/10.1016/j.jmmm.2016.12.125

    Article  ADS  Google Scholar 

  17. A. Vogel, A. Drews, T. Kamionka, M. Bolte, and G. Meier, Phys. Rev. Lett. 105, 037201 (2010). https://doi.org/10.1103/PhysRevLett.105.037201

  18. N. Locatelli, V. V. Naletov, J. Grollier, G. de Loubens, V. Cros, C. Deranlot, C. Ulysse, G. Faini, O. Klein, and A. Fert, Appl. Phys. Lett. 98, 062501 (2011). https://doi.org/10.1063/1.3553771

  19. Iu. V. Vetrova, M. Zelent, J. Soltys, V. A. Gubanov, A. V. Sadovnikov, T. Scepka, J. Derer, R. Stoklas, V. Cambel, and M. Mruczkiewicz, Appl. Phys. Lett. 118, 212409 (2021). https://doi.org/10.1063/5.0045835

  20. M. Kuchibhotla, A. Talapatra, A. Haldar, and A. O. Adeyeye, J. Appl. Phys. 130, 083906 (2021). https://doi.org/10.1063/5.0060689

  21. C.-M. Jin and H.-F. Du, Chin. Phys. B 24, 128501 (2015). https://doi.org/10.1088/1674-1056/24/12/128501

  22. A. A. Thiele, J. Appl. Phys. 45, 377 (1974). https://doi.org/10.1063/1.1662989

    Article  ADS  Google Scholar 

  23. A. K. Zvezdin and K. A. Zvezdin, Bull. Lebedev Phys. Inst. 37 (8), 240 (2010). https://doi.org/10.3103/S1068335610080038

    Article  ADS  Google Scholar 

  24. K. Yu. Guslienko, B. A. Ivanov, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, J. Appl. Phys. 91, 8037 (2002). https://doi.org/10.1063/1.1450816

    Article  ADS  Google Scholar 

  25. A. Yu. Galkin and B. A. Ivanov, J. Exp. Theor. Phys. 109, 74 (2009). https://doi.org/10.1134/S1063776109070103

    Article  ADS  Google Scholar 

  26. O. V. Sukhostavets, J. Gonzalez, and K. Yu. Guslienko, Phys. Rev. B 87, 094402 (2013). https://doi.org/10.1103/PhysRevB.87.094402

  27. O. V. Sukhostavets and K. Y. Guslienko, Appl. Phys. Express 8, 023002 (2015). https://doi.org/10.7567/APEX.8.023002

  28. K. Yu. Guslienko, J. Nanosci. Nanotechnol. 8, 2745 (2008).

    Article  Google Scholar 

  29. P. D. Kim, V. A. Orlov, R. Yu. Rudenko, V. S. Prokopenko, I. N. Orlova, and S. S. Zamai, JETP Lett. 101, 562 (2015). https://doi.org/10.1134/S0021364015080068

    Article  ADS  Google Scholar 

  30. G. de Loubens, A. Riegler, B. Pigeau, F. Lochner, F. Boust, K. Y. Guslienko, H. Hurdequint, L. W. Molenkamp, G. Schmidt, A. N. Slavin, V. S. Tiberkevich, N. Vukadinovic, and O. Klein, Phys. Rev. Lett. 102, 17602 (2009).

    Article  Google Scholar 

  31. S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman, and Y. Otani, Phys. Rev. Lett. 106, 197203 (2011).

  32. H. Jung, K.-S. Lee, D.-E. Jeong, Y.-S. Choi, Y.-S. Yu, D.-S. Han, A. Vogel, L. Bocklage, G. Meier, M.-Y. Im, P. Fischer, and S.-K. Kim, Sci. Rep. 1, 59 (2011). https://doi.org/10.1038/srep00059

    Article  Google Scholar 

  33. J. Dou, S. C. Hernandez, C. Yu, M. J. Pechan, L. Folks, J. A. Katine, and M. J. Carey, J. Appl. Phys. 107, 09B514 (2010). https://doi.org/10.1063/1.3358068D

  34. Yu. P. Ivanov, E. V. Pustovalov, A. V. Ognev, and L. A. Chebotkevich, Phys. Solid State 51 (11), 2300 (2009). https://doi.org/10.1134/S1063783409110171

    Article  ADS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research, project no. 20-02-00696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Orlov.

Ethics declarations

The authors declare that conflicts of interest is absent.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.A., Prokopenko, V.S., Rudenko, R.Y. et al. Low-Frequency Spectrum of the Gyrotropic Modes of a Finite Chain of Interacting Ferromagnetic Disks. Tech. Phys. 67, 289–296 (2022). https://doi.org/10.1134/S1063784222050085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222050085

Keywords:

Navigation