Skip to main content
Log in

Preparation of Water-Insoluble Silk Fibroin Films. Study of Their Structure and Properties

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Conditions for obtaining water-insoluble silk fibroin in the form of films have been worked out. Using optical microscopy, a change in the surface morphology of the films was demonstrated due to a structural transition to a coarsely fragmented state as a result of the treatment of the films with methyl alcohol. The conformational transition of silk fibroin from the disordered structure of the untreated film to the β-folded structure was confirmed by the FTIR spectroscopy method. The glass-transition temperature of the native film equal to 216°C was determined by the method of differential scanning calorimetry. A study of the mechanical properties of silk fibroin films in a liquid medium showed that their strength decreases and elasticity increases by almost 15 times compared with tests of the same films in a dry state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Nashchekina, O. A. Lukonina, D. M. Darvish, A. V. Nashchekin, V. Yu. Elokhovskii, V. E. Yudin, and N. A. Mikhailova, Tech. Phys. 65, 1535 (2020). https://doi.org/10.1134/S1063784220090224

    Article  Google Scholar 

  2. Yu. A. Nashchekina, O. A. Lukonina, and N. A. Mikhailova, Tsitologiya 62 (7), 1 (2020). https://doi.org/10.31857/S0041377120070044

    Article  Google Scholar 

  3. I. P. Dobrovol’skaya, V. E. Yudin, P. V. Popryadukhin, and E. M. Ivan’kova, Polymer Matrices for Tissue Engineering (Izd.-Poligraf. Assots. Univ. Rossii, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  4. Yu. A. Nashchekina, P. O. Nikonov, N. M. Yudintseva, A. V. Nashchekin, A. I. Likhachev, O. A. Moskalyuk, V. E. Yudin, and M. I. Blinova, Tsitologiya 58 (11), 843 (2016).

    Google Scholar 

  5. B. Panilaitis, G. H. Altman, J. Chen, H. J. Jin, V. Karageorgiou, and D. L. Kaplan, Biomaterials 24, 3079 (2003).

    Article  Google Scholar 

  6. L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, Biomaterials 26, 147 (2005).

    Article  Google Scholar 

  7. H. J. Kim, U. J. Kim, G. Vunjak-Novakovic, B. H. Min, and D. L. Kaplan, Biomaterials 26, 4442 (2005).

    Article  Google Scholar 

  8. Y. Wang, D. D. Rudym, A. Walsh, L. Abrahamsen, H. J. Kim, H. S. Kim, C. Kirker-Head, and D. L. Kaplan, Biomaterials 29, 3415 (2008).

    Article  Google Scholar 

  9. C. Holland, K. Numata, J. Rnjak-Kovacina, and F. P. Seib, Adv. Healthcare Mater. 8, e1800465 (2019). https://doi.org/10.1002/adhm.201800465

  10. M. Parekh, V. Romano, K. Hassanin, V. Testa, R. Wongvisavavit, S. Ferrari, A. Haneef, C. Willoughby, D. Ponzin, V. Jhanji, N. Sharma, J. Daniels, S. B. Kaye, S. Ahmad, and H. J. Levis, Tissue Eng. 12, 1 (2021). https://doi.org/10.1177/2041731421990536

    Article  Google Scholar 

  11. P. Bhattacharjee, J. Fernández-Pérez, and M. Ahearne, Mater. Sci. Eng., C 105, 110093 (2019). https://doi.org/10.1016/j.msec.2019.110093

  12. L. A. Safonova, M. M. Bobrova, O. I. Agapova, M. S. Kotlyarova, A. Yu. Arkhipova, M. M. Moisenovich, and I. I. Agapov, Sovr. Tekh. Med. 7 (3), 6 (2015).

    Article  Google Scholar 

  13. L. D. Koh, Y. Cheng, C. P. Teng, Y. W. Khin, X. J. Loh, S. Y. Tee, M. Low, E. Ye, H. D. Yu, Y. W. Zhang, and M. Y. Han, Prog. Polym. Sci. 46, 86 (2015).

    Article  Google Scholar 

  14. Y. Qi, H. Wang, K. Wei, Y. Yang, R. Y. Zheng, I. S. Kim, and K. Q. Zhang, Int. J. Mol. Sci. 18 (3), 237 (2017). https://doi.org/10.3390/ijms18030237

    Article  Google Scholar 

  15. J. H. Kim, C. H. Park, O. J. Lee, J. M. Lee, J. W. Kim, Y. H. Park, and C. S. Ki, J. Biomed. Mater. Res., Part A 100, 3287 (2012). https://doi.org/10.1002/jbm.a.34274

    Article  Google Scholar 

  16. L. Jeong, K. Y. Lee, J. W. Liu, and W. H. Park, Int. J. Biol. Macromol. 38, 140 (2006). https://doi.org/10.1016/j.ijbiomac.2006.02.009

    Article  Google Scholar 

  17. D. Terada, Y. Yokoyama, S. Hattori, H. Kobayashi, and Y. Tamada, Mater. Sci. Eng. 58, 119 (2016). https://doi.org/10.1016/j.msec.2015.07.041

    Article  Google Scholar 

  18. K. Yazawa, A. D. Malay, N. Ifuku, T. Ishii, H. Masunaga, T. Hikima, and K. Numata, Biomacromolecules 19 (6), 2227 (2018). https://doi.org/10.1021/acs.biomac.8b00232

    Article  Google Scholar 

  19. S. Kaewpirom, RSC Adv. 10 (27), 15913 (2020). https://doi.org/10.1039/D0RA02634D

    Article  ADS  Google Scholar 

  20. S. W. Ha, A. E. Tonelli, and S. M. Hudson, Biomacromolecules 6 (3), 1722 (2005). https://doi.org/10.1021/bm050010y

    Article  Google Scholar 

  21. G. Freddi, G. Pessina, and M. Tsukada, Int. J. Biol. Macromol. 24 (2–3), 251 (1999). https://doi.org/10.1016/s0141-8130(98)00087-7

    Article  Google Scholar 

  22. L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, Biomaterials 26 (2), 147 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.047

    Article  Google Scholar 

  23. H. Weon and Y. Park, J. Appl. Polym. Sci. 82, 750 (2001). https://doi.org/10.1002/app.1901

    Article  Google Scholar 

  24. Q. Lu, X. Hu, X. Wang, J. A. Kluge, S. Lu, P. Cebe, and D. L. Kaplan, Acta Biomater. 6, 1380 (2010). https://doi.org/10.1016/j.actbio.2009.10.041

    Article  Google Scholar 

  25. I. C. Um, H. Kweon, Y. H. Park, and S. Hudson, Int. J. Biol. Macromol. 29, 91 (2001). https://doi.org/10.1016/s0141-8130(01)00159-3

    Article  Google Scholar 

  26. Q. Lu, X. Hu, X. Wang, J. A. Kluge, S. Lu, P. Cebe, and D. L. Kaplan, Acta Biomater. 6 (4), 1380 (2010). https://doi.org/10.1016/j.actbio.2009.10.041

    Article  Google Scholar 

  27. A. Sagnella, A. Pistone, S. Bonetti, A. Donnadio, E. Saracino, M. Nocchetti, C. Dionigi, G. Ruani, M. Muccini, T. Posati, V. Benfenati, and R. Zambonid, RSC Adv. 6, 9304 (2016).

    Article  ADS  Google Scholar 

  28. X. Hu, D. L. Kaplan, and P. Cebe, Macromolecules 3 (9), 6161 (2006). https://doi.org/10.1021/ma0610109

    Article  ADS  Google Scholar 

  29. L. A. Safonova, M. M. Bobrova, O. I. Agapova, M. S. Kotlyarova, A. Yu. Arkhipova, M. M. Moisenovich, and I. I. Agapov, Sovr. Tekh. Med. 7 (3), 6 (2015).

    Article  Google Scholar 

  30. H. Kweon, H. C. Ha, I. C. Um, and Y. H. Park, J. Appl. Polym. Sci. 80, 928 (2001). https://doi.org/10.1002/app.1172

    Article  Google Scholar 

  31. J. Gatesy, C. Hayashi, D. Motriuk, J. Woods, and R. Lewis, Science 291 (5513), 2603 (2001). https://doi.org/10.1126/science.1057561

    Article  ADS  Google Scholar 

  32. C. Fu, D. Porter, and Z. Shao, Macromolecules 42 (20), 7877 (2009). https://doi.org/10.1021/ma901321k

    Article  ADS  Google Scholar 

  33. Y. Cheng, L.-D. Koh, D. Li, B. Ji, M.-Y. Han, and Y.-W. Zhang, J. R. Soc., Interface 11 (96), 20140305 (2014). https://doi.org/10.1098/rsif.2014.0305

  34. C. Z. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z. G. Li, and J. Janin, Proteins: Struct., Funct., Bioinf. 44 (2), 119 (2001). https://doi.org/10.1002/prot.1078

    Article  Google Scholar 

  35. M. Cetinkaya, S. Xiao, B. Markert, W. Stacklies, and F. Gräter, Biophys. J. 100 (5), 1298 (2011). https://doi.org/10.1016/j.bpj.2010.12.3712

    Article  ADS  Google Scholar 

  36. K. Yazawa, K. Ishida, H. Masunaga, T. Hikima, and K. Numata, Biomacromolecules 17 (3), 1057 (2016). https://doi.org/10.1021/acs.biomac.5b01685

    Article  Google Scholar 

  37. N. Joharia, L. Moroni, and A. Samadikuchaksaraei, Eur. Polym. J. 134, 109842 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109842

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00400_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Nashchekina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nashchekina, Y.A., Konygina, V.S., Popova, E.N. et al. Preparation of Water-Insoluble Silk Fibroin Films. Study of Their Structure and Properties. Tech. Phys. 67, 297–303 (2022). https://doi.org/10.1134/S1063784222050073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222050073

Keywords:

Navigation