Skip to main content
Log in

Determination of Moisture Content in Vegetative Cultivated Plants Using Millimeter-Wave Spectroscopy for the Tasks of Increasing Plant Productivity

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Genetic and breeding study shows inefficiency of the analysis of the genotype-environment interaction (GEI) in plants at a molecular level, since the GEI effect completely vanishes on such a level being an emergent property resulting from the interaction of gene products with labile (over days, weeks, or months) limiting environmental factors. Such a study should be carried out at higher system levels, in particular, at the next stages of life organization (organismal, population, ecological, and phytocenotic). Since the most powerful effect for an increase in the plant productivity and yield (GEI) cannot be traced at the molecular level, knowledge of the molecular structures of the genome without knowledge of the dynamics of limiting environmental factors and the interaction of gene products with them does not contribute to the development of high technologies for ecological genetic increase in plant productivity and yield. The existing data show that rapid methods for measuring traits of plants that comprehensively characterize complex dynamic system (in particular, GEI) can be created with the aid of interdisciplinary approaches, primarily, using physical experimental methods. In the framework of such an approach, we propose application of millimeter-wave spectroscopy, which is very sensitive to changes in the water supply of plant tissues, for breeding of drought-resistant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. A. Dragavtsev, I. M. Mikhailenko, and M. A. Proskuryakov, S-kh. Biol. 52, 487 (2017). https://doi.org/10.15389/agrobiology.2017.3.487rus

    Article  Google Scholar 

  2. V. A. Dragavtsev, P. P. Litun, I. M. Shkel’, and N. N. Nechiporenko, Dokl. Akad. Nauk SSSR 274 (3), 720 (1984)

    Google Scholar 

  3. N. V. Kochergina and V. A. Dragavtsev, Introduction to the Theory of Ecological and Genetic Organization of Polygenic Plant feature and the Breeding Indices Theory (STsDB, St. Petersburg, 2008) [in Russian].

  4. V. Dragavtsev and J. Pesek, in Genetic Diversity in Plants. Encyclopedia of Basic Life Science, Ed. by A. Muhammed, R. Aksel, and R. C. von Borstel (Plenum, New York–London, 1977), Vol. 8, p. 233.

    Google Scholar 

  5. R. T. Furbank and M. Tester, Trends Plant Sci. 16 (12), 635 (2011). https://doi.org/10.1016/j.tplants.2011.09.005

    Article  Google Scholar 

  6. I. R. Cowan, J. Appl. Ecol. 2 (1), 221 (1965). https://doi.org/10.2307/2401706

    Article  Google Scholar 

  7. D. R. Brunfeldt and F. T. Ulaby, IEEE Trans. Geosci. Remote Sens. 6, 520 (1984). https://doi.org/10.1109/TGRS.1984.6499163

    Article  ADS  Google Scholar 

  8. F. T. Ulaby and R. P. Jedlicka, IEEE Trans. Geosci. Remote Sens. 4, 406 (1984). https://doi.org/10.1109/TGRS.1984.350644

    Article  ADS  Google Scholar 

  9. F. T. Ulaby and M. A. El-Rayes, IEEE Trans. Geosci. Remote Sens. 5, 550 (1987). https://doi.org/10.1109/TGRS.1987.289833

    Article  ADS  Google Scholar 

  10. M. A. El-Rayes and F. T. Ulaby, IEEE Trans. Geosci. Remote Sens. 5, 541 (1987). https://doi.org/10.1109/TGRS.1987.289832

    Article  ADS  Google Scholar 

  11. S. Trabelsi, M. Ghomi, J. C. Peuch, and H. Baudrand, Proc. 22nd Eur. Microwave Conf., Helsinki, Finland, 2002, Vol. 2, p. 1234. https://doi.org/10.1109/EUMA.1992.335873

  12. C. Matzler, IEEE Trans. Geosci. Remote Sens. 32 (4), 947 (1994). https://doi.org/10.1109/36.298024

    Article  ADS  Google Scholar 

  13. J. Liao, H. Guo, and Y. Shao, Proc. IEEE Int. Geoscience and Remote Sensing Symp., Toronto, Ontario, Canada, 2002, Vol. 5, p. 2620. https://doi.org/10.1109/IGARSS.2002.1026720

  14. S. O. Nelson, Proc. 2003 ASAE Annual Meeting, Las Vegas, NV, USA, 2003. https://doi.org/10.13031/2013.14075

  15. S. O. Nelson, Proc. IEEE Antennas and Propagation Society Int. Symp. Conjunction with USNC/CNC/URSI North Am. Radio Sci. Meeting, Columbus, OH, USA, 2003, Vol. 4, p. 46. https://doi.org/10.1109/APS.2003.1220116

  16. A. W. Kraszewski and S. O. Nelson, J. Microwave Power Electromagn. Energy 39 (1), 41 (2004). https://doi.org/10.1080/08327823.2004.11688507

    Article  Google Scholar 

  17. S. O. Nelson, J. Microwave Power Electromagn. Energy 40 (1), 31 (2005). https://doi.org/10.1080/08327823.2005.11688523

    Article  Google Scholar 

  18. S. O. Nelson, Proc. 2005 IEEE Instrumentation and Measurement Technology Conf., Ottawa, ON, Canada, 2005, Vol. 1, p. 360. https://doi.org/10.1109/IMTC.2005.1604135

  19. S. O. Nelson, Proc. 2005 IEEE Antennas and Propagation Society Int. Symp., Washington, DC, USA, 2005, Vol. 4, p. 455. https://doi.org/10.1109/APS.2005.1552849

  20. T. Shimomachi, S. Ou., Y. Ichimaru, S. Cho, T. Takemasa, S. Yamayaki, and T. Takakura, Environ. Control Biol. (Fukuoka, Jpn.) 43 (1), 47 (2005). https://doi.org/10.2525/ecb.43.47

  21. D. Jamaludin, S. Abd Aziz, and N. U. A. Ibrahim, Int. J. Environ. Sci. Dev. 5 (3), 286 (2014). https://doi.org/10.7763/IJESD.2014.V5.493

    Article  Google Scholar 

  22. A. Kundu and B. Gupta, Proc. 2014 Int. Conf. on Control, Instrumentation, Energy and Communication (CIEC), Calcutta, India, 2014, p. 480. https://doi.org/10.1109/CIEC.2014.6959135

  23. R. Vijay, R. Jain, and K. S. Sharma, J. Environ. Nanotechnol. 3 (1), 43 (2014). https://doi.org/10.13074/jent.2014.01.132035

    Article  Google Scholar 

  24. J. Y. Zeng, Z. Li, Z. H. Tang, Q. Chen, H. Y. Bi, and L. B. Zhao, IOP Conf. Ser.: Earth Environ. Sci. 17 (1), 012055 (2014). https://doi.org/10.1088/1755-1315/17/1/012055

  25. D. E. Khaled, N. Novas, J. A. Gazquez, R. M. Garcia, and F. Manzano-Agugliaro, Sensors 15 (7), 15363 (2015). https://doi.org/10.3390/s150715363

    Article  ADS  Google Scholar 

  26. S. Dadshani, A. Kurakin, S. Amanov, B. Hein, H. Rongen, S. Cranstone, U. Blievernicht, E. Menzel, J. Leon, N. Klein, and A. Ballvora, Plant Methods 11 (1), 1 (2015). https://doi.org/10.1186/s13007-015-0054-x

    Article  Google Scholar 

  27. R. Gente, A. Rehn, and M. Koch, J. Infrared, Millimeter, Terahertz Waves 36 (3), 312 (2015). https://doi.org/10.1007/s10762-014-0127-3

    Article  Google Scholar 

  28. H. Krraoui, F. Mejri, and T. Aguili, J. Electromagn. Waves Appl. 30 (12), 1643 (2016). https://doi.org/10.1080/09205071.2016.1208592

    Article  Google Scholar 

  29. D. El Khaled, N. N. Castellano, J. A. Gazquez, A. J. Perea-Moreno, and F. Manzano-Agugliaro, Materials 9 (5), 310 (2016). https://doi.org/10.3390/ma9050310

    Article  ADS  Google Scholar 

  30. E. M. Cheng, A. B. Shahriman, H. A. Rahim, M. F. Abdul Malek, N. F. Mohd Nasir, N. Abdulaziz, M. S. Abdul Majid, and K. S. Basaruddin, J. Telecommun., Electron. Comput. Eng. 10 (1–14), 1 (2018).

  31. M. Kafarski, A. Wilczek, A. Szypłowska, A. Lewandowski, P. Pieczywek, G. Janik, and W. Skierucha, Sensors 18 (1), 121 (2018). https://doi.org/10.3390/s18010121

    Article  ADS  Google Scholar 

  32. A. G. Konings, K. Rao, and S. C. Steele-Dunne, New Phytol. 223 (3), 1166 (2019). https://doi.org/10.1111/nph.15808

    Article  Google Scholar 

  33. B. Colak, Microwave Opt. Technol. Lett. 61 (11), 2591 (2019). https://doi.org/10.1002/mop.31932

    Article  Google Scholar 

  34. C. M. O. Muvianto, K. Yuniarto, S. Ariessaputra, B. Darmawan, M. Yadnya, and A. Rachman, Proc. Int. Conf. on Science and Technology (ICST), June 2020, Vol. 1.

  35. P. F. Silva, E. E. Santana, M. S. S. Pinto, E. P. Andrade, J. N. Carvalho, R. Freire, M. A. Oliveira, and E. E. Oliveira, J. Microwaves, Optoelectron. Electromagn. Appl. 19, 86 (2020). https://doi.org/10.1590/2179-10742020v19i11868

    Article  Google Scholar 

  36. F. V. Di Girolamo, A. Toncelli, A. Tredicucci, M. Bitossi, and R. Paoletti, J. Phys.: Conf. Ser. 1548 (1), 012002 (2020). https://doi.org/10.1088/1742-6596/1548/1/012002

  37. H. Dogan, I. B. Basyigit, and A. Genc, J. Microwave Power Electromagn. Energy 54 (3), 254 (2020). https://doi.org/10.1080/08327823.2020.1794724

    Article  Google Scholar 

  38. R. Li, Y. Lu, J. M. Peters, B. Choat, and A. J. Lee, Sci. Rep. 10 (1), 1 (2020). https://doi.org/10.1038/s41598-020-78154-z

    Article  Google Scholar 

  39. C. Quemada, J. M. Pérez-Escudero, R. Gonzalo, I. Ederra, L. G. Santesteban, N. Torres, and J. C. Iriarte, Remote Sens. 13 (11), 2088 (2021). https://doi.org/10.3390/rs13112088

    Article  ADS  Google Scholar 

  40. S. Metlek, K. Kayaalp, I. B. Basyigit, A. Genc, and H. Dogan, Int. J. RF Microwave Comput.-Aided Eng. 31 (1), e22496 (2021). https://doi.org/10.1002/mmce.22496

  41. V. V. Meriakri, MRS Online Proc. Libr. 631, 26 (2000). https://doi.org/10.1557/PROC-631-AA2.6

    Article  Google Scholar 

Download references

Funding

This work was supported by the State Contract of the Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. von Gratovski or M. P. Parkhomenko.

Ethics declarations

The authors declare that there is no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Gratovski, S.V., Kocherina, N.V., Parkhomenko, M.P. et al. Determination of Moisture Content in Vegetative Cultivated Plants Using Millimeter-Wave Spectroscopy for the Tasks of Increasing Plant Productivity. Tech. Phys. 67, 317–324 (2022). https://doi.org/10.1134/S1063784222050048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222050048

Keywords:

Navigation