Skip to main content
Log in

Effect of Magnetic and Electric Fields on the Dynamics of Plasmoid Formation in the Gatchina Discharge

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The behavior of the Gatchina discharge, which is mainly used for producing an analog of the ball lightning in the conventional laboratory atmosphere, in magnetic and electric fields is analyzed. It is shown that the sign of the uncompensated electric charge both in the active discharge phase and in long-lived luminous formations can be determined in such experiments. It is also shown that electric and magnetic fields can change the direction of motion of the luminous formation being generated and can even block its formation completely. The form and the mechanism of existence of firework ball lightnings, the photographs of which are given in well-known monographs devoted to ball lightning, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

Notes

  1. Henceforth, we will use the term “plasmoid” although we think that this term does not reflect the physical meaning of the long-lived luminous formation generated in the discharge; however it is more convenient (and shorter) and, in addition, is used by most researchers.

REFERENCES

  1. S. Zhao, C. Yuan, A. A. Kudryavtsev, O. M. Zherebtsov, and G. D. Shabanov, Tech. Phys. 66 (7), 1081 (2021). https://doi.org/10.1134/S1063784221070173

    Article  Google Scholar 

  2. G. D. Shabanov, Phys.-Usp. 62 (1), 92 (2019). https://doi.org/10.3367/UFNe.2018.03.038318

    Article  Google Scholar 

  3. G. D. Shabanov and B. Yu. Sokolovskii, Plasma Phys. Rep. 31 (6), 512 (2005).

    Article  ADS  Google Scholar 

  4. V. R. Solov’ev, A. M. Konchakov, V. M. Krivtsov, and N. L. Aleksandrov, Plasma Phys. Rep. 34 (7), 594 (2008).

    Article  ADS  Google Scholar 

  5. L. A. Zhilyakov, A. V. Kostanovskii, and G. P. Pokhil, High Temp. 46 (5), 721 (2008).

    Article  Google Scholar 

  6. B. Juettner, S. Noack, A. Versteegh, and G. Fussmann, Proc. 28th Int. Conf. on Phenomena in Ionized Gases (ICPIG), Prague, Czech Republic, July 15–20, 2007, WA6, 5P12-05, 2229 (2007).

  7. A. Versteegh, K. Behringer, U. Fantz, G. Fussmann, B. J. Uttner, and S. Noack, Plasma Sources Sci. Technol. 17, 024014 (2008). https://doi.org/10.1088/0963-0252/17/2/024014

  8. M. Jacobs, W. Gekelman, P. Pribyl, Y. Qian, and S. Abarzhi, Phys. Plasmas 28, 052114 (2021). https://doi.org/10.1063/5.0040880

  9. E. M. Bazelyan and Yu. P. Raizer, Phys.-Usp. 43, 701 (2000).

    Article  Google Scholar 

  10. E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Inst. Phys., Bristol, 2000).

    Book  Google Scholar 

  11. V. V. Panteleev and S. S. Vasiliev, Proc. 1st Interuniv. Conf. on Chemistry and Physics of Low-Temperature Plasma (Moscow State Univ., Moscow, 1971), p. 153.

  12. J. F. Corum and K. L. Corum, Phys.-Usp. 33 (4) (1990).

  13. J. D. Barry, Ball Lightning and Bead Lightning (Plenum, New York, 1980).

    Book  Google Scholar 

  14. U. Fantz, S. Kalafat, R. Friedl, and S. Briefi, J. Appl. Phys. 114 (4), 043302 (2013). https://doi.org/10.1063/1.4816311

  15. U. Fantz, R. Friedl, and S. Briefi, J. Appl. Phys. 117 (17), 173301 (2015). https://doi.org/10.1063/1.4919607

  16. V. L. Ginzburg, Phys.-Usp. 42, 353 (1999).

    Article  Google Scholar 

  17. P. L. Kapitza, Dokl. Akad. Nauk SSSR 101 (2), 245 (1955).

    Google Scholar 

  18. G. D. Shabanov, Tech. Phys. Lett. 28 (2), 164 (2002).

    Article  ADS  Google Scholar 

  19. R. F. Avramenko, B. I. Bakhtin, V. I. Nikolaeva, L. P. Poskacheeva, and N. N. Shirokov, Sov. Phys.-Tech. Phys. 35 (12), 1396 (1990).

    Google Scholar 

  20. R. F. Avramenko, V. I. Nikolaeva, and L. P. Poskacheeva, in Ball Lightning in the Laboratory: Collection of Articles (Khimiya, Moscow, 1994), pp. 15–56 [in Russian].

    Google Scholar 

  21. S. E. Emelin, V. S. Semenov, A. I. Eikhval’d, and A. K. Khassani, in Ball Lightning in the Laboratory: Collection of Articles (Khimiya, Moscow, 1994), pp. 87–95 [in Russian].

    Google Scholar 

  22. A. I. Klimov and G. I. Mishin, Tech. Phys. Lett. 19, 405 (1993).

    ADS  Google Scholar 

  23. I. P. Stakhanov, About the Physical Nature of a Ball-Lightning, 3rd ed. (Nauchnyi Mir, Moscow, 1996).

    Google Scholar 

  24. A. N. Grigor’ev, A. V. Pavlenko, A. P. Il’in, and E. I. Karnaukhov, Izv. Tomsk. Politekh. Univ. 309 (1), 66 (2006).

    Google Scholar 

  25. G. P. Kuz’min, I. M. Minaev, and A. A. Rukhadze, High Temp. 40, 477 (2002).

    Article  Google Scholar 

  26. S. I. Stepanov, Tech. Phys. 59 (1), 107 (2014).

    Article  Google Scholar 

  27. G. D. Shabanov, A. G. Krivshich, B. Yu. Sokolovski, and O. M. Zherebtsov, Plasma Phys. Rep. 35 (7), 611 (2009).

    Article  ADS  Google Scholar 

  28. A. I. Egorov and S. I. Stepanov, Tech. Phys. 47 (12), 1584 (2002).

    Article  Google Scholar 

  29. M. I. Baranov, Elektrotekh. Elektromekh., No. 5, 56 (2013).

  30. S. E. Dubowsky, A. N. Rose, N. G. Glumac, and B. J. McCall, Plasma 3, 92 (2020). https://doi.org/10.3390/plasma3030008

    Article  Google Scholar 

  31. V. Stelmashuk and P. Hoffer, IEEE Trans. Plasma Sci. 45, 3160 (2017). https://doi.org/10.1109/TPS.2017.2770224

    Article  ADS  Google Scholar 

  32. M. L. Shmatov and K. D. Stephan, J. Atmos. Sol.-Terr. Phys. 195, 105115 (2019). https://doi.org/10.1016/j.jastp.2019.105115

  33. R. Friedl, U. Fantz, I. Pilottek, D. Schmid, and S. Steibel, J. Phys. D: Appl. Phys. 54, 095205 (2021). https://doi.org/10.1088/1361-6463/abc918

  34. V. S. Edel’man, Sov. Phys.-Usp. 23, 227 (1980).

    Article  ADS  Google Scholar 

  35. V. I. Tatarskii, Sov. Phys.-Usp. 26, 311 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. I. Nikitin, V. L. Bychkov, T. F. Nikitina, A. M. Velichko, and V. I. Abakumov, J. Phys.: Conf. Ser. 996, 012011 (2018). https://doi.org/10.1088/1742-6596/996/1/012011

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.G. Krivshich and O.M.  Zherebtsov for helpful remarks made during the preparation of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Shabanov.

Ethics declarations

The authors declare that there is no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Yuan, C., Kudryavtsev, A.A. et al. Effect of Magnetic and Electric Fields on the Dynamics of Plasmoid Formation in the Gatchina Discharge. Tech. Phys. 67, 171–189 (2022). https://doi.org/10.1134/S1063784222030069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222030069

Keywords:

Navigation