Skip to main content
Log in

Investigation of the Operation Speed of Surface-Ionization Detectors

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We report on the results of investigations based the thermodesorption spectroscopy and are aimed at analysis of the dependence of the operation speed of a surface-ionization detector on the emitter temperature TE. For this purpose, we have registered with the detector the evaporation spectra of heroin, papaverine, and morphine, which were obtained at different rates of thermo-programmed heating of a substance. To obtain the dependence of the detector operation speed on remitter temperature TE, these spectra have been recorded at different values of TE. It is found that with increasing TE, the operation speed of the detector increases. It is found that this is associated with the increase in the rate of heterogenic processes in the absorption layer of the emitter upon an increase in TE. We have developed a mathematical model of this dependence, which is based on the surface ionization of molecules in nonstationary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Environmental Monitoring and Characterization, Ed. by J. F. Artiola, I. L. Pepper, and M. L. Brusseau (Academic, 2004). https://doi.org/10.1016/B978-0-12-064477-3.X5000-0

    Book  Google Scholar 

  2. E. A. Sevryukova, Environmental Pollution Monitoring (Yurait, Moscow, 2016) [in Russian].

    Google Scholar 

  3. Y. Wu and Y. Zhang, Food Chem. Toxicol. 56, 325 (2013). https://doi.org/10.1016/j.fct.2013.02.044

    Article  Google Scholar 

  4. K. Vij, Textbook of Forensic Medicine and Toxicology: Principles and Practice, 5th ed. (Elsevier, New Delhi, 2011).

    Google Scholar 

  5. V. R. Preedy, Neuropathology of Drug Addictions and Substance Misuse, Vol. 2: Stimulants, Club and Dissociative Drugs, Hallucinogens, Steroids, Inhalants, and International Aspects (Academic, 2016). https://doi.org/10.1016/C2013-0-14226-2

  6. G. D. Christian, P. K. Dasgupta, and K. A. Schug, Analytical Chemistry, 7th ed. (Wiley, 2013).

    Google Scholar 

  7. N. A. Bakar, A. Abu-Siada, and S. Islam, IEEE Electr. Insul. Mag. 30 (3), 39 (2014). https://doi.org/10.1109/MEI.2014.6804740

    Article  Google Scholar 

  8. J. R. Dean, Extraction Techniques in Analytical Sciences (Wiley, 2009).

    Book  Google Scholar 

  9. R. Self, Extraction of Organic Analytes from Foods: A Manual of Methods (R. Soc. Chem., London, 2005).

    Google Scholar 

  10. A. S. Franca and L. M. L. Nollet, Spectroscopic Methods in Food Analysis (Taylor, London, 2018).

    Google Scholar 

  11. B. M. Ham and A. MaHam, Analytical Chemistry: A Chemist and Laboratory Technician’s Toolkit (Wiley, Hoboken, NJ, 2015).

  12. U. Khasanov, U. Kh. Rasulev, D. T. Usmanov, and S. S. Iskhakova, Surf. Interface Anal. 38 (4), 309 (2006). https://doi.org/10.1002/sia.2257

    Article  Google Scholar 

  13. U. K. Rasulev, S. S. Iskhakova, U. Khasanov, and A. V. Mikhalin, Int. J. Ion Mobility Spectrom. 4, 212 (2001).

    Google Scholar 

  14. S. S. Iskhakova, A. V. Mikhailin, U. Kh. Rasulev, Ya. R. Sagatov, and U. Khasanov, J. Anal. Chem. 59 (1), 50 (2004). https://doi.org/10.1023/B:JANC.0000011668.20677.d1

    Article  Google Scholar 

  15. S. S. Iskhakova, U. Khasanov, U. Kh. Rasulev, and D. T. Usmanov, Tech. Phys. Lett. 46 (12), 1231 (2020). https://doi.org/10.1134/S1063785020120196

    Article  ADS  Google Scholar 

  16. U. Kh. Rasulev, A. A. Balaukhom, B. G. Vtorovym, E. G. Nazarov, and G. B. Khudaeva, Inform. Soobshch. Akad. Nauk UzSSR, No. 470, 4 (1989).

  17. M. Holcapek and Wm. C. Byrdwell, Handbook of Advanced Chromatography / Mass Spectrometry Techniques (Academic, 2017).

    Google Scholar 

  18. J. H. Gross, Mass Spectrometry: A Textbook, 2nd ed. (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-54398-7

    Book  Google Scholar 

  19. C.F. Poole, J. Chromatogr., A 1421, 137 (2015). https://doi.org/10.1016/j.chroma.2015.02.061

  20. U. Kh. Rasulev, E. Ya. Zandberg, A. G. Kamenev, and V. I. Poleev, Zh. Anal. Khim. 35 (6), 1188 (1980).

    Google Scholar 

  21. A. Hackner, A. Habauzit, G. Müller, E. Comini, G. Faglia, and G. Sberveglieri, IEEE Sens. J. 9 (12), 1727 (2009). https://doi.org/10.1109/JSEN.2009.2030705

    Article  ADS  Google Scholar 

  22. U. Kh. Rasulev and E. Ya. Zandberg, Prog. Surf. Sci. 28 (3–4), 181 (1988). https://doi.org/10.1016/0079-6816(88)90003-2

    Article  ADS  Google Scholar 

  23. K. E. Grafinger, W. Bernhard, and W. Weinmann, Sci. Justice 59 (4), 459 (2019). https://doi.org/10.1016/j.scijus.2019.03.005

    Article  Google Scholar 

  24. G.-F. Pang, Analytical Methods for Food Safety by Mass Spectrometry, Vol. 1: Pesticides (Academic, 2018). https://doi.org/10.1016/C2016-0-03461-7

  25. D. T. Usmanov, U. Khasanov, and U. Kh. Rasulev, Chem. Nat. Compd. 39, 489 (2003). https://doi.org/10.1023/B:CONC.0000011126.68733.19

    Article  Google Scholar 

  26. U. Khasanov, U. Kh. Rasulev, D. T. Usmanov, and S. S. Iskhakova, Surf. Interface Anal. 38 (4), 309 (2006). https://doi.org/10.1002/sia.2257

    Article  Google Scholar 

  27. U. Khasanov, U. Rasulev, D. Usmanov, S. Iskhakova, and U. Nabiev, J. Pharm. Biomed. Anal. 37 (5), 1125 (2005). https://doi.org/10.1016/j.jpba.2004.09.026

    Article  Google Scholar 

  28. D. Usmanov, U. Khasanov, A. Pantsirev, and J. Bocxlaer, J. Pharm. Biomed. Anal. 53 (4), 1058 (2010). https://doi.org/10.1016/j.jpba.2010.07.004

    Article  Google Scholar 

  29. I. Ferrer and M. E. Thurman, Advanced Techniques in Gas Chromatography-Mass Spectrometry (GC–MS–MS and GC–TOF–MS) for Environmental Chemistry (Elsevier, 2013), Vol. 61.

    Google Scholar 

  30. E. Lundanes, L. Reubsaet, and T. Greibrokk, Chromatography: Basic Principles, Sample Preparations and Related Methods (Wiley, 2014).

    Google Scholar 

  31. F. Rouessac and A. Rouessac, Chemical Analysis: Modern Instrumentation Methods and Techniques, 2nd ed. (Wiley, 2013).

    Google Scholar 

  32. N. I. Tsarev, V. I. Tsarev, and I. V. Katrakov, Practical Gas Chromatography (Altai State Univ., Barnaul, 2000) [in Russian].

    Google Scholar 

  33. K. A. Gol’bert and M. S. Vigdergauz, Introduction to Gas Chromatography, 3rd ed. (Khimiya, Moscow, 1990) [in Russian].

    Google Scholar 

  34. E. S. Karataev, Theoretical Foundations of Gas Chromatography (Kazan Nat. Res. Technol. Univ., Kazan, 2015) [in Russian].

    Google Scholar 

  35. E. E. Petushkov, U. Kh. Rasulev, E. G. Nazarov, A. A. Stamov, and Yu. P. Kozlov, Vysokochist. Veshchestva 2, 127 (1993).

    Google Scholar 

  36. U. Kh. Rasulev, E. G. Nazarov, and G. B. Khudaeva, Metally 5, 155 (1995).

    Google Scholar 

  37. C. Cerquia, A. Ponzoni, D. Zappa, E. Comini, and G. Sberveglieri, Procedia Eng. 87, 1023 (2014). https://doi.org/10.1016/j.proeng.2014.11.335

    Article  Google Scholar 

  38. V. I. Kapustin, V. S. Petrov, and A. A. Chernousov, Tech. Phys. Lett. 30 (9), 717 (2004). https://doi.org/10.1134/1.1804574

    Article  ADS  Google Scholar 

  39. D. V. Kapustin, A. A. Bush, K. O. Nagornov, and V. I. Kapustin, Tech. Phys. Lett. 38 (2), 196 (2012). https://doi.org/10.1134/S1063785012020277

    Article  ADS  Google Scholar 

  40. D. T. Usmanov and U. Khasanov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5, 503 (2011). https://doi.org/10.1134/S1027451011020194

    Article  Google Scholar 

  41. D. T. Usmanov, Sh. Dj. Akhunov, U. Khasanov, V. M. Rotshteyn, and B. Sh. Kasimov, Eur. J. Mass Spectrom. 26 (2), 153 (2020). https://doi.org/10.1177/1469066719875655

    Article  Google Scholar 

  42. Sh. Akhunov, Kh. Ashurov, Sh. Axmedov, B. Kasimov, V. Rotshteyn, A. Radjabov, and D. Usmanov, Eur. J. Mass Spectrom. 27 (1), 29 (2021). https://doi.org/10.1177/14690667211002777

    Article  Google Scholar 

  43. S. Takahashi, F. Nagamura, M. Sasaki, and T. Fujii, Chem. Pap. 63 (5), 613 (2009). https://doi.org/10.2478/s11696-009-0062-2

    Article  Google Scholar 

  44. W. Li, D. Wu, Sh. Chen, H. Peng, and Y. Guan, J. Chromatogr., A 1218, 6812 (2011). https://doi.org/10.1016/j.chroma.2011.07.074

  45. A. Hackner, W. Legner, G. Müller, E. Biavardi, E. Dalcanale, S. Zampolli, I. Elmi, and G. C. Cardinali, Sens. Actuators, B 185, 771 (2013). https://doi.org/10.1016/j.snb.2012.09.030

    Article  Google Scholar 

  46. W. Li, Y. Guan, Z. Shena, and D. Wu, Chem. Commun. 47, 2423 (2011). https://doi.org/10.1039/C0CC04528D

    Article  Google Scholar 

  47. G. Müller, J. D. Prades, A. Hackner, A. Ponzoni, E. Comini, and G. Sberveglieri, Nanomaterials 8 (12), 1017 (2018). https://doi.org/10.3390/nano8121017

    Article  Google Scholar 

  48. E. G. Nazarov and U. Kh. Rasulev, Non-Stationary Processes of Surface Ionization (Fan, Tashkent, 1991) [in Russian].

  49. A. Kholov, K. S. Tursunov, U. Kh. Rasulev, E. G. Nazarov, M. N. Lapushkin, M. V. Knat’ko, E. Ya. Zandberg, and I. L. Zhuravleva, Theor. Exp. Chem. 20, 405 (1985). https://doi.org/10.1007/BF00516575

    Article  Google Scholar 

  50. E. Ya. Zanberg, N. I. Ionov, U. Kh. Rasulev, and Sh. M. Khalikov, Zh. Tekh. Fiz. 47, 133 (1978). https://www.twirpx.com/file/3496451/

    Google Scholar 

  51. E. Ya. Zanberg, E. G. Nazarov, and U. Kh. Rasulev, Zh. Tekh. Fiz. 50, 1752 (1980). https://www.twirpx.com/file/3496377/

    Google Scholar 

  52. E. Ya. Zanberg, E. G. Nazarov, and U. Kh. Rasulev, Zh. Tekh. Fiz. 51, 123 (1981). https://www.twirpx.com/file/3496320/

    Google Scholar 

  53. G. Rakhmanov, U. Kh. Rasulev, and I. Saidumarov, Surf. Interface Anal. 38 (4), 219 (2006). https://doi.org/10.1002/sia.2206

    Article  Google Scholar 

Download references

Funding

This work was performed under project nos. MU-FZ-20171025268 and FA-Atekh-2018-17 of the Ministry of Innovation Development of the Republic of Uzbekistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sh. Radjabov.

Ethics declarations

The authors declare that there is no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radjabov, A.S., Iskhakova, S.S. & Usmanov, D.T. Investigation of the Operation Speed of Surface-Ionization Detectors. Tech. Phys. 67, 104–111 (2022). https://doi.org/10.1134/S106378422201011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422201011X

Navigation