Skip to main content
Log in

Natural Frequencies of Bending Vibrations of Carbon Nanotubes

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Using a molecular-dynamics model with a reduced number of degrees of freedom, the natural frequencies of bending vibrations of carbon nanotubes (CNTs) of various diameters are calculated under plane strain conditions. It is shown that the theory of thin cylindrical shells provides high accuracy in estimating the frequencies of low-amplitude natural vibrations even for relatively small CNT diameters. It is shown that, with an increase in amplitude, the frequency of natural vibrations decreases, which is consistent with the data available in the literature. The results obtained are necessary for the design of terahertz resonators based on CNTs and high-precision mass and force nanosensors based on the effect of electromechanical coupling that CNTs exhibit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. C.-Y. Li and T.-W. Chou, Nanotechnology 15, 1493 (2004). https://doi.org/10.1088/0957-4484/15/11/021

    Article  ADS  Google Scholar 

  2. J.-X. Shi, X.-W. Lei, and T. Natsuki, Sensors 21, 1907 (2021). https://doi.org/10.3390/s21051907

    Article  ADS  Google Scholar 

  3. H. B. Khaniki, M. H. Ghayesh, and M. Amabili, Int. J. Non-Linear Mech. 129, 103658 (2021). https://doi.org/10.1016/j.ijnonlinmec.2020.103658

  4. G. Abadal, Z. J. Davis, N. Barniol, et al., Nanotechnology 12, 100 (2001). https://doi.org/10.1088/0957-4484/12/2/305

    Article  ADS  Google Scholar 

  5. C. Li and T.-W. Chou, Appl. Phys. Lett. 84, 5246 (2004). https://doi.org/10.1063/1.1764933

    Article  ADS  Google Scholar 

  6. T. Natsuki, N. Matsuyama, and Q.-Q. Ni, Appl. Phys. A 120, 1309 (2015).

    Article  ADS  Google Scholar 

  7. A. Bouchaala, A. H. Nayfeh, and M. I. Younis, J. Dyn. Syst., Meas., Control 138, 091002 (2016).

  8. S. S. Ghaffari, S. Ceballes, and A. Abdelkefi, Smart Mater. Struct. 28, 074003 (2019).

  9. S. S. Ghaffari, S. Ceballes, and A. Abdelkefi, Nonlinear Dyn. 100, 1013 (2020).

    Article  Google Scholar 

  10. T. Natsuki and K. Urakami, Electronics 8, 1082 (2019).

    Article  Google Scholar 

  11. F. Menacer, A. Kadr, and Z. Dibi, Int. J. Autom. Comput. 17, 279 (2018).

    Article  Google Scholar 

  12. X.-W. Lei, Q.-Q. Ni, J.-X. Shi, and T. Natsuki, Nanoscale Res. Lett. 6, 492 (2011).

    Article  ADS  Google Scholar 

  13. S. Fazelzadeh and E. Ghavanloo, Compos. Struct. 94, 1016 (2012).

    Article  Google Scholar 

  14. R. Ansari, H. Rouhi, and S. Sahmani, J. Vib. Control 20, 670 (2012).

    Article  Google Scholar 

  15. K. Avramov, Int. J. Non-Linear Mech. 107, 149 (2018).

    Article  ADS  Google Scholar 

  16. S. V. Goupalov, Phys. Rev. B 71, 085420 (2005).

  17. S. B. Rochal, V. L. Lorman, and Y. I. Yuzyuk, Phys. Rev. B 88, 235435 (2013).

  18. G. D. Mahan, Phys. Rev. B 65, 235402 (2002).

  19. S. S. Savinskii and V. A. Petrovskii, Phys. Solid State 44, 1802 (2002).

    Article  ADS  Google Scholar 

  20. Y. M. Sirenko, M. A. Stroscio, and K. W. Kim, Phys. Rev. E 53, 1003 (1996).

    Article  ADS  Google Scholar 

  21. B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996).

    Article  ADS  Google Scholar 

  22. A. V. Savin, Y. S. Kivshar, and B. Hu, Phys. Rev. B 82, 195422 (2010). https://doi.org/10.1103/PhysRevB.82.195422

  23. I. Evazzade, I. P. Lobzenko, E. A. Korznikova, I. A. Ovid’ko, M. R. Roknabadi, and S. V. Dmitriev, Phys. Rev. B 95, 035423 (2017). https://doi.org/10.1103/PhysRevB.95.035423

  24. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Rev. B 102, 245432 (2020). https://doi.org/10.1103/PhysRevB.102.245432

  25. A. V. Savin, E. A. Korznikova, A. M. Krivtsov, and S. V. Dmitriev, Eur. J. Mech.-A/Solids 80, 103920 (2020). https://doi.org/10.1016/j.euromechsol.2019.103920

  26. E. A. Korznikova, L. K. Rysaeva, A. V. Savin, E. G. Soboleva, E. G. Ekomasov, M. A. Ilgamov, and S. V. Dmitriev, Materials 12, 3951 (2019). https://doi.org/10.3390/ma12233951

    Article  ADS  Google Scholar 

  27. L. K. Rysaeva, D. V. Bachurin, R. T. Murzaev, D. U. Abdullina, E. A. Korznikova, R. R. Mulyukov, and S. V. Dmitriev, Facta Univ., Ser. Mech. Eng. 18, 525 (2020). https://doi.org/10.22190/FUME201005043R

    Article  Google Scholar 

  28. L. K. Rysaeva, E. A. Korznikova, R. T. Murzaev, D.  U.  Abdullina, A. A. Kudreyko, J. A. Baimova, D. S. Lisovenko, and S. V. Dmitriev, Facta Univ., Ser. Mech. Eng. 18, 1 (2020). https://doi.org/10.22190/FUME200128011R

    Article  Google Scholar 

  29. D. U. Abdullina, E. A. Korznikova, V. I. Dubinko, D. V. Laptev, A. A. Kudreyko, E. G. Soboleva, S.  V.  Dmitriev, and K. Zhou, Computation 8, 27 (2020). https://doi.org/10.3390/computation8020027

    Article  Google Scholar 

  30. S. V. Dmitriev, A. S. Semenov, A. V. Savin, M. A. Ilgamov, and D. V. Bachurin, J. Micromech. Mol. Phys. 5, 2050010 (2021). https://doi.org/10.1142/S2424913020500101

  31. N. S. Bakhvalov, Numerical Methods: Analysis, Algebra, Ordinary Differential Equations (Mir, Moscow, 1977).

  32. M. A. Il’gamov, Vibrations of Elastic Shells Containing Liquid and Gas (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  33. A. M. Rao, J. Chen, E. Richter, U. Schlecht, P. C. Ek-lund, R. C. Haddon, U. D. Venkateswaran, Y.-K. Kwon, and D. Tománek, Phys. Rev. Lett. 86, 3895 (2011).

    Article  ADS  Google Scholar 

  34. R. Al-Jishi and G. Dresselhaus, Phys. Rev. B 26, 4514 (1982).

    Article  ADS  Google Scholar 

Download references

Funding

This study was financed by the Russian Science Foundation, grant no. 21-19-00813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Dmitriev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, S.V., Sunagatova, I.R., Ilgamov, M.A. et al. Natural Frequencies of Bending Vibrations of Carbon Nanotubes. Tech. Phys. 67, 7–13 (2022). https://doi.org/10.1134/S1063784222010042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222010042

Keywords:

Navigation