Skip to main content
Log in

The Thermodynamic Brayton Cycle with a Reversible Chemical Reaction

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A Brayton cycle is considered in which the working substance is a chemically reacting gas with molar weight and heat capacity changing as a result of a reversible chemical reaction. By way of example, the reaction N2 + 3H2 \( \rightleftarrows \) 2NH3 is considered. For a constant heat supply, the cycle is characterized by the lower (Tlow) and upper (Ttop) temperature boundaries of existence; between these boundaries, the efficiency can change from 0 to 1. Such peculiar properties are manifested because of two factors: reversibility of the chemical reaction and the special role of the chemical work in the conversion of heat into mechanical work, which minimizes the heat loss to the surrounding space in a closed thermodynamic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. P. Bazarov, Thermodynamics (Pergamon, New York, 1964).

    Google Scholar 

  2. A. P. Baskakov, B. I. Berg, O. K. Vitt, Yu. V. Kuznetsov, and N. F. Filippovskii, Heat Engineering (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  3. R. Andriani, F. Gamma, and U. Ghezzi, Trans. Jpn. Soc. Aeronaut. Space Sci. 54 (183), 44 (2011). https://doi.org/10.2322/tjsass.54.44

    Article  ADS  Google Scholar 

  4. Y. Cui and K. Deng, J. Therm. Sci. Technol. 9 (1), JTST0001 (2014). https://doi.org/10.1299/jtst.2014jtst0001

  5. K. O. Sabdenov, M. Erzada, and A. T. Suleimenov, J. Eng. Phys. Thermophys. 92 (3), 574 (2019). https://doi.org/10.1007/s10891-019-01965-z

    Article  Google Scholar 

  6. T. Kanda, M. Sato, T. Kimura, and H. Asakawa, Trans. Jpn. Soc. Aeronaut. Space Sci. 61 (3), 106 (2018). https://doi.org/10.2322/tjsass.61.106

    Article  Google Scholar 

  7. E. Takahashi, H. Kojim, and H. Furutani, Synth. Engl. Edit. 8 (4), 187 (2015). https://doi.org/10.5571/syntheng.8.4_187

    Article  Google Scholar 

  8. J. Nizar, M. Mukai, R. Kagawa, H. Nakakura, O. Moriue, and E. Murase, Int. J. Automot. Eng. 3 (3), 81 (2012). https://doi.org/10.20485/jsaeijae.3.3_81

    Article  Google Scholar 

  9. T. Fukui, T. Shiraishi, T. Murakami, and N. Nakajima, JSME Int. J., Ser. B 42 (4), 776 (1999). https://doi.org/10.1299/jsmeb.42.776

    Article  Google Scholar 

  10. Sh. Kojima, J. Therm. Sci. Technol. 14 (2), JTST0024 (2019). https://doi.org/10.1299/jtst.2019jtst0024

  11. H. Fujiki, Ch. Nakagawa, Y. Takeda, and H. Cho, Trans. Mater. Res. Soc. Jpn. 41 (3), 285 (2016). https://doi.org/10.14723/tmrsj.41.285

    Article  Google Scholar 

  12. K. O. Sabdenov, Combust., Explos. Shock Waves 57 (1), 46 (2021). https://doi.org/10.1134/S0010508221010056

    Article  Google Scholar 

  13. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosions (Consultants Bureau, New York, 1985).

    Book  Google Scholar 

  14. V. P. Semenov, G. F. Kiselev, and A. A.Orlov, Ammonia Production (Khimiya, Moscow, 1985) [in Russian].

    Google Scholar 

  15. A. M. Zhabotinskii, Concentration Self-Oscillations (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  16. Oscillations and Traveling Waves in Chemical Systems, Ed. by R. J. Field and M. Burger (Wiley, New York, 1985).

    Google Scholar 

  17. N. I. Kol’tsov and V. Kh. Fedotov, Russ. J. Phys. Chem. B 12, 590 (2018). https://doi.org/10.1134/S1990793118030259

    Article  Google Scholar 

  18. N. B. Vargaftik, Handbook of Thermophysical Properties of Liquids and Gases, 2nd ed. (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Sabdenov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabdenov, K.O. The Thermodynamic Brayton Cycle with a Reversible Chemical Reaction. Tech. Phys. 66, 1275–1283 (2021). https://doi.org/10.1134/S1063784221090164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221090164

Navigation