Skip to main content
Log in

The Effects of Amplitude-Dependent Internal Friction in a Low-Frequency Annealed Polycrystalline Copper Rod Resonator

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The effects of amplitude-dependent internal friction in a low-frequency rod resonator made of annealed polycrystalline copper are studied experimentally and theoretically. We report the results of measurements of nonlinear losses and resonance frequency shift in the first three longitudinal resonator modes in the frequency range from 2 to 11 kHz. The observed effects are described analytically using the rheological model and the equation of state of a microinhomogeneous medium with hysteretic loss saturation and relaxation of its viscoelastic defects. The values of effective parameters of the hysteretic nonlinearity of the annealed copper sample and their frequency dependences are determined by comparing the experimental and analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. K. A. Naugol’nykh and L. A. Ostrovsky, Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, New York, 1998).

    Google Scholar 

  2. V. E. Nazarov and A. V. Radostin, Nonlinear Wave Processes in Elastic Micro-Inhomogeneous Solids (Wiley, Hoboken, New Jersey, 2015).

    Google Scholar 

  3. L. K. Zarembo and V. A. Krasilnikov, Sov. Phys.-Usp. 13, 778 (1970).

    Article  ADS  Google Scholar 

  4. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Pergamon, Oxford, 1986).

  5. M. A. Isakovich, General Acoustics (Cambridge Univ. Press, Cambridge, 1973).

    Google Scholar 

  6. V. E. Nazarov and S. B. Kiyashko, Radiophys. Quantum Electron. 62 (5), 348 (2019).

    Article  ADS  Google Scholar 

  7. N. N. Davidenkov, Zh. Tekh. Fiz. 8 (6), 483 (1938).

    Google Scholar 

  8. T. A. Read, Phys. Rev. 58, 371 (1940).

    Article  ADS  Google Scholar 

  9. A. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956).

    Article  ADS  Google Scholar 

  10. Ultrasonic Methods for Studying Dislocations: Collection of Articles, Ed. by L. G. Merkulov (Inostr. Lit., Moscow, 1963) [in Russian].

    Google Scholar 

  11. “Application to quantum and solid state physics,” in Physical Acoustics and Methods, Ed. by W. P. Mason (Academic, New York–London, 1966), Vol. 4, Part A.

  12. D. H. Niblett and J. Wilkes, Usp. Fiz. Nauk 80 (1), 125 (1963).

    Article  Google Scholar 

  13. S. Asano, J. Phys. Soc. Jpn. 29 (4), 952 (1970).

    Article  ADS  Google Scholar 

  14. A. B. Lebedev, Phys. Solid State 41, 1105 (1999). https://doi.org/10.1134/1.1130947

    Article  ADS  Google Scholar 

  15. V. P. Levin and V. B. Proskurin, Dislocation Inelasticity in Metals (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  16. A. S. Novick, Phys. Rev. 80 (2), 249 (1950).

    Article  ADS  Google Scholar 

  17. S. Takahachi, J. Appl. Phys. 11 (12), 1253 (1956).

    Google Scholar 

  18. D. N. Beshers, J. Appl. Phys. 30 (2), 252 (1959).

    Article  ADS  Google Scholar 

  19. L. A. Kamentsky, Thesis (Cornel Univ., AFOSR-TN-56-425, 1956).

  20. U. Hiki, J. Phys. Soc. Jpn. 13 (8), 1138 (1958).

    Article  ADS  Google Scholar 

  21. I. J. Teutonico, A. V. Granato, and K. Lucke, J. Appl. Phys. 35 (1), 220 (1964).

    Article  ADS  Google Scholar 

  22. K. Lucke, A. V. Granato, and I. J. Teutonico, J. Appl. Phys. 39 (11), 5181 (1968).

    Article  ADS  Google Scholar 

  23. A. V. Granato and K. Lucke, J. Appl. Phys. 52 (12), 7136 (1981).

    Article  ADS  Google Scholar 

  24. P. Peguin and H. K. Birnbaum, J. Appl. Phys. 39 (9), 4428 (1968).

    Article  ADS  Google Scholar 

  25. D. G. Blair, T. S. Hutchinson, and D. H. Rogers, Can. J. Phys. 49 (6), 633 (1971).

    Article  ADS  Google Scholar 

  26. G. Gremaud, Mater. Sci. Eng., A 521522, 12 (2009).

  27. S. B. Kustov, S. N. Golyandin, A. V. Nikiforov, and B. K. Kardashev, Sov. Phys. Solid State 31, 326 (1989).

    Google Scholar 

  28. S. N. Golyandin and S. B. Kustov, Fiz. Tverd. Tela 34 (12), 3763 (1992).

    Google Scholar 

  29. S. N. Golyandin and S. B. Kustov, Fiz. Tverd. Tela 34 (12), 3771 (1992).

    Google Scholar 

  30. S. N. Golyandin and S. B. Kustov, Phys. Solid State 37, 1786 (1995).

    ADS  Google Scholar 

  31. S. N. Golyandin and S. B. Kustov, J. Alloys Compd. 211212, 164 (1994).

  32. S. Kustov, G. Gremaud, W. Benoit, Y. Nisino, and S. Asano, J. Appl. Phys. 85 (3), 1444 (1999).

    Article  ADS  Google Scholar 

  33. S. N. Golyandin, K. V. Sapozhnikov, Yu. A. Emel’yanov, et al., Phys. Solid State 40, 1667 (1998). https://doi.org/10.1134/1.1130631

    Article  ADS  Google Scholar 

  34. K. V. Sapozhnikov, S. N. Golyandin, and S. B. Kustov, Phys. Solid State 52, 43 (2010). https://doi.org/10.1134/S1063783410010087

    Article  ADS  Google Scholar 

  35. V. E. Nazarov and S. B. Kiyashko, Tech. Phys. 59 (3), 311 (2014). https://doi.org/10.1134/S1063784214030207

    Article  Google Scholar 

  36. R. W. K. Honeycombe, The Plastic Deformation of Metals (Edward Arnold, London, 1968).

    Google Scholar 

  37. D. V. Sivukhin, Atomic and Nuclear Physics (Fizmatlit, Moscow, 2002), Vol. 5 [in Rissian].

    Google Scholar 

  38. J. C. Swartz and J. Weertman, J. Appl. Phys. 32 (10), 1860 (1961).

    Article  ADS  Google Scholar 

  39. D. Gelli, J. Appl. Phys. 33 (4), 1547 (1962).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-02-00215A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Nazarov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, V.E., Kolpakov, A.B. The Effects of Amplitude-Dependent Internal Friction in a Low-Frequency Annealed Polycrystalline Copper Rod Resonator. Tech. Phys. 66, 1257–1267 (2021). https://doi.org/10.1134/S1063784221090140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221090140

Navigation