Skip to main content
Log in

Silicon Monoxide Carbonized by Fluorocarbon As a Composite Material for Anodes of Lithium-Ion Batteries

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Disperse composite materials based on silicon monoxide and carbon (SiO/C) have been obtained by thermal treatment of a powder mixture consisting of 40 wt % SiO and 60 wt % CF0.8. Annealing has been performed in the argon atmosphere at temperatures 1000–1250°C. It has been established using electron microscopy and Raman scattering that, at T ≥ 1100°C, silicon carbide is formed in the solid-phase product, including in the form of nanowhiskers of cubic modification. Based on the data on the decrease of the reaction mixture weight, the composition of the formed products is calculated as a function of the annealing temperature. The anodes prepared from the composites obtained at a temperature above 1100°C demonstrate a sharp decrease in the capacitance and in the Coulomb efficiency. It is shown that the observed changes are determined by an increase in the oxygen concentration in the matrix surrounding silicon precipitates, which have been formed as a result of SiO disproportionation, rather than by the formation of SiC. It is established that an optimal annealing temperature provides the highest values of the electrode capacitance, the Coulomb efficiency of the first cycle, and the ability to operate at high current densities is T = 1050°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. K. Pan, F. Zou, M. Canova, Y. Zhu, and J.-H. Kim, J. Power Sources 413, 20 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.010

    Article  ADS  Google Scholar 

  2. J. Park, S. S. Park, and Y. S. Won, Electrochim. Acta 107, 467 (2013). https://doi.org/10.1016/j.electacta.2013.06.059

    Article  Google Scholar 

  3. M. Yamada, A. Ueda, K. Matsumoto, and T. Ohzuku, J. Electrochem. Soc. 158 (4), A417 (2011). https://doi.org/10.1149/1.3551539

    Article  Google Scholar 

  4. T. Tan, P.-K. Lee, and D. Y. W. Yu, J. Electrochem. Soc. 166 (3), A5210 (2019). https://doi.org/10.1149/2.0321903jes

    Article  Google Scholar 

  5. E. V. Astrova, V. P. Ulin, A. V. Parfeneva, and V. B. Voronkov, Tech. Phys. Lett. 45 (7), 664 (2019). https://doi.org/10.1134/S1063785019070022

    Article  ADS  Google Scholar 

  6. E. V. Astrova, V. P. Ulin, A. V. Parfeneva, A. M. Rumyantsev, V. B. Voronkov, A. V. Nashchekin, V. N. Nevedomskiy, Y. M. Koshtyal, and M. V. Tomkovich, J. Alloy Compd. 826, 154242 (2020). https://doi.org/10.1016/j.jallcom.2020.154242

    Article  Google Scholar 

  7. E. V. Astrova, A. V. Parfeneva, A. M. Rumyantsev, V. P. Ulin, M. V. Baidakova, V. N. Nevedomskii, and A. V. Nashchekin, Tech. Phys. Lett. 46 (2), 114 (2020). https://doi.org/10.1134/S1063785020020042

    Article  ADS  Google Scholar 

  8. E. V. Astrova, V. P. Ulin, A. V. Parfeneva, A. V. Nashchekin, V. N. Nevedomskiy, and M. V. Baidakova, Semiconductors 54 (8), 900 (2020). https://doi.org/10.1134/S1063782620080059

    Article  ADS  Google Scholar 

  9. D. A. Lozhkina, E. V. Astrova, R. V. Sokolov, D. A. Kirilenko, A. A. Levin, A. V. Parfeneva, and V. P. Ulin, Semiconductors 55 (4), 373 (2021). https://doi.org/10.1134/S1063782621040096

    Article  Google Scholar 

  10. Ch.-M. Park, W. Choi, Y. Hwa, J.-H. Kim, G. Jeong, and H.-J. Sohn, J. Mater. Chem. 20, 4854 (2010). https://doi.org/10.1039/B923926J

    Article  Google Scholar 

  11. D. Sri Maha Vishnu, J. Sure, H.-K. Kim, R. Vasant Kumar, and C. Schwandt, Energy Storage Mater. 26, 234 (2020). https://doi.org/10.1016/j.ensm.2019.12.041

    Article  Google Scholar 

  12. Y. Hu, X. Liu, X. Zhang, N. Wan, D. Pan, X. Li, Y. Bai, and W. Zhang, Electrochim. Acta 190, 33 (2016). https://doi.org/10.1016/j.electacta.2015.12.211

    Article  Google Scholar 

  13. M. Wojdyr, J. Appl. Crystallogr. 43 (5), 1126 (2010). https://doi.org/10.1107/S0021889810030499

    Article  Google Scholar 

  14. R. Dhiman, E. Johnson, and P. Morgen, Ceram. Int. 37 (8), 3759 (2011). https://doi.org/10.1016/j.ceramint.2011.06.001

    Article  Google Scholar 

  15. M. Bechelany, A. Brioude, D. Cornu, G. Ferro, and P. Miele, Adv. Funct. Mater. 17, 939 (2007). https://doi.org/10.1002/adfm.200600816

    Article  Google Scholar 

  16. S.-L. Zhang, B.-F. Zhu, F. Huang, Y. Yan, E.-Y. Shang, S. Fan, and W. Han, Solid State Commun. 111, 647 (1999). https://doi.org/10.1016/S0038-1098(99)00262-8

    Article  ADS  Google Scholar 

  17. A. Merlen, J. G. Buijnsters, and C. Pardanaud, Coatings 7 (10), 153 (2017). https://doi.org/10.3390/coatings7100153

    Article  Google Scholar 

  18. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Carbon 43 (8), 1731 (2005). https://doi.org/10.1016/j.carbon.2005.02.018

    Article  Google Scholar 

  19. A. Ya. Vinogradov, S. A. Grudinkin, N. A. Besedina, S. V. Koniakhin, M. K. Rabchinskii, E. D. Eidelman, and V. G. Golubev, Semiconductors 52 (7), 914 (2018). https://doi.org/10.1134/S1063782618070266

    Article  ADS  Google Scholar 

  20. A. C. Ferrari and J. Robertson, Phys. Rev. B 61 (20), 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  ADS  Google Scholar 

  21. F. Tuinstra and J. L. Koening, J. Chem. Phys. 53, 1126 (1970). https://doi.org/10.1063/1.1674108

    Article  ADS  Google Scholar 

  22. M. S. Dresselhaus, M. A. Pimenta, P. C. Eklund, and G. Dresselhaus, in Raman Scattering in Materials Science, Ed. by W. H. Weber and R. Merlin (Springer, Berlin, 2000), Vol. 42, p. 314.

  23. L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, N. L. Speziali, A. Jorio, and M. A. Pimenta, Carbon 46, 272 (2008). https://doi.org/10.1016/j.carbon.2007.11.015

    Article  Google Scholar 

  24. T. P. Nguyen and S. Lefrant, Solid State Commun. 57 (4), 235 (1986). https://doi.org/10.1016/0038-1098(86)90146-8

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Electron microscopic investigations were performed on the equipment of the Joint Research Center “Materials Science and Diagnostics in Advanced Technologies” of the Ioffe Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Lozhkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozhkina, D.A., Astrova, E.V., Likhachev, A.I. et al. Silicon Monoxide Carbonized by Fluorocarbon As a Composite Material for Anodes of Lithium-Ion Batteries. Tech. Phys. 66, 1228–1240 (2021). https://doi.org/10.1134/S1063784221090103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221090103

Navigation