Skip to main content
Log in

Magnetic Resonance Frequency Shift of Na Atoms during Collisions in a Mixture of Potassium and Sodium Atoms

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Collisions between sodium and potassium atom in the conditions of optical orientation of potassium atoms are considered. Because of collisions, the spin exchange occurs between colliding atoms, which leads to a magnetic resonance frequency shift of Na atoms. Calculations reveal that the magnetic resonance frequency shift of Na atoms in the upper hyperfine state (F = 2) changes its sign from negative to positive upon an increase in the temperature in the absorption chamber from 300 to 500 K and passes through zero near temperature T ~ 450 K, while the frequency shift of the lower hyperfine state (F = 1) remains negative in the entire range of investigated temperatures. An analogous effect is observed for the first time in the case in which the main contribution to the magnetic resonance frequency shift comes from the spin exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Budker and M. Romalis, Nat. Phys. 3 (4), 227 (2007).

    Article  Google Scholar 

  2. E. B. Aleksandrov and A. K. Vershovskii, Phys.-Usp. 52, 605 (2009).

    Article  Google Scholar 

  3. T. G. Walker and M. S. Larsen, Adv. At. Mol. Opt. Phys. 65, 373 (2016). https://doi.org/10.1016/bs.aamop.2016.04.002

    Article  ADS  Google Scholar 

  4. E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P.  Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, NeuroImage 149, 404 (2017). https://doi.org/10.1016/j.neuroimage.2017.01.034

    Article  Google Scholar 

  5. S. Groeger, G. Bison, J.-L. Schenker, R. Winands, and A. Weis, Eur. Phys. J. D 38 (2), 239 (2006). https://doi.org/10.1140/epjd/e2006-00037-y

    Article  ADS  Google Scholar 

  6. Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, Phys. Rev. A 94, 052705 (2016). https://doi.org/10.1103/PhysRevA.94.052705

    Article  ADS  Google Scholar 

  7. Y. Lu, Y. Zhang, W. Fan, L. Xing, Y. Zhai, and W. Quan, Chin. Phys. B 29 (4), 043204 (2020). https://doi.org/10.1088/1674-1056/ab75d3

    Article  ADS  Google Scholar 

  8. S. P. Dmitriev, N. A. Dovator, and V. A. Kartoshkin, Tech. Phys. 60 (6), 826 (2015). https://doi.org/10.1134/S1063784215060079

    Article  Google Scholar 

  9. K. Wei, T. Zhao, X. Fang, H. Li, Y. Zhai, B. Han, and W. Quan, Phys. Rev. Appl. 13 (4), 044027 (2020). https://doi.org/10.1103/PhysRevApplied.13.044027

    Article  ADS  Google Scholar 

  10. A. I. Okunevich, Opt. Spectrosc. 79 (5), 661 (1995).

    ADS  Google Scholar 

  11. P. Bicchi, L. Mon, P. Savino, and B. Zambon, Il Nuovo Cimento, 55 (1), 1 (1980). https://doi.org/10.1007/BF02728372

    Article  Google Scholar 

  12. V. A. Kartoshkin, Opt. Spectrosc. 116 (4), 548 (2014). https://doi.org/10.1134/S0030400X14030096

    Article  ADS  Google Scholar 

  13. V. A. Kartoshkin, Opt. Spectrosc. 109 (5), 674 (2010). https://doi.org/10.1134/S0030400X10110056

    Article  ADS  Google Scholar 

  14. V. S. Ivanov and V. B. Sovkov, J. Chem. Phys. 118 (18), 8242 (2003). https://doi.org/10.1063/1.1565107

    Article  ADS  Google Scholar 

  15. W. T. Zemke and W. C. Stwalley, J. Chem. Phys. 100 (4), 2661 (1994). https://doi.org/10.1063/1.467249

    Article  ADS  Google Scholar 

  16. A. Gerdes, M. Hobein, H. Knöckel, and E. Tiermann, Eur. Phys. J. D 49 (1), 67 (2008). https://doi.org/10.1140/epjd/e2008-00138-7

    Article  ADS  Google Scholar 

  17. N. M. Pomerantsev, V. M. Ryzhkov, and G. V. Skrotskii, Physical Principles of Quantum Magnetometry (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  18. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Clarendon, Oxford, 1965).

    MATH  Google Scholar 

  19. A. N. Nesmeyanov, Vapor Pressure of the Chemical Elements (Elsevier, New York, 1963).

    Google Scholar 

  20. V. A. Kartoshkin, Opt. Spectrosc. 128 (9), 1355 (2020). https://doi.org/10.1134/S0030400X2009012X

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kartoshkin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartoshkin, V.A. Magnetic Resonance Frequency Shift of Na Atoms during Collisions in a Mixture of Potassium and Sodium Atoms. Tech. Phys. 66, 1221–1227 (2021). https://doi.org/10.1134/S1063784221090097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221090097

Navigation