Skip to main content
Log in

Dynamics of Droplets Ejected over the Evaporating Water Surface

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We present the results of a ballistic experiment, in which an intensive capillary wave throws up microdroplets levitated over a heated region of water due to an ascending convective steam–air flow. The resistance of this flow to the motion of a droplet is estimated. The flow parameter (the velocity decrease field) is estimated using various theoretical approximations. The maximum size of freely levitated droplets is determined. It is shown that stationary levitation of droplets is impossible in a linearly nonuniform flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. Umeki, M. Ohata, H. Nakanishi, and M. Ichikawa, Sci. Rep. 5, 8046 (2015). https://doi.org/10.1038/srep08046

    Article  ADS  Google Scholar 

  2. V. J. Schaefer, Am. Sci. 59 (5), 534 (1971).

    ADS  Google Scholar 

  3. F. Ienna, H. Yoo, and G. H. Pollack, Soft Matter 8, 11850 (2012). https://doi.org/10.1039/c2sm26497h

    Article  ADS  Google Scholar 

  4. A. A. Fedorets, JETP Lett. 79 (8), 372 (2004). https://doi.org/10.1134/1.1772434

    Article  ADS  Google Scholar 

  5. D. N. Gabyshev, A. A. Fedorets, and O. Klemm, Aerosol Sci. Technol. 54, 1556 (2020). https://doi.org/10.1080/02786826.2020.1804522

    Article  ADS  Google Scholar 

  6. D. N. Gabyshev, A. A. Fedorets, N. E. Aktaev, O. Klemm, and S. N. Andreev, J. Aerosol Sci. 135, 103 (2019). https://doi.org/10.1016/j.jaerosci.2019.06.002

    Article  ADS  Google Scholar 

  7. A. A. Fedorets, L. A. Dombrovsky, E. Bormashenko, and M. Nosonovsky, Int. J. Heat Mass Transfer 133, 712 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.160

    Article  Google Scholar 

  8. A. A. Fedorets, L. A. Dombrovsky, E. Bormashenko, D. N. Gabyshev, and M. Nosonovsky, Proc. 14th Int. Conf. on Heat Transfer, Fluid Mech. and Thermodyn. (HEFAT-2019), Wicklow, Ireland, 2019. https://doi.org/10.13140/RG.2.2.26140.54400

  9. A. A. Fedorets, L. A. Dombrovsky, D. N. Gabyshev, E. Bormashenko, and M. Nosonovsky, Int. J. Therm. Sci. 153, 106375 (2020). https://doi.org/10.1016/j.ijthermalsci.2020.106375

    Article  Google Scholar 

  10. A. A. Fedorets, N. E. Aktaev, D. N. Gabyshev, E. Bormashenko, L. A. Dombrovsky, and M. Nosonovsky, J. Phys. Chem. C 123, 23572 (2019). https://doi.org/10.1021/acs.jpcc.9b08194

    Article  Google Scholar 

  11. A. A. Fedorets, E. Bormashenko, L. A. Dombrovsky, and M. Nosonovsky, Philos. Trans. R. Soc., A 377, 20190121 (2019). https://doi.org/10.1098/rsta.2019.0121

  12. L. A. Dombrovsky, A. A. Fedorets, V. Yu. Levashov, A. P. Kryukov, E. Bormashenko, and M. Nosonovsky, Atmosphere 11, 965 (2020). https://doi.org/10.3390/atmos11090965

    Article  ADS  Google Scholar 

  13. W. Suhr, PhyDid-B, Beitrag DD 05.03 (2014). http://www.phydid.de/index.php/phydid-b/article/view/513

  14. L. Jiao, R. Chen, X. Zhu, Q. Liao, H. Wang, L. An, J. Zhu, X. He, and H. Feng, J. Phys. Chem. Lett. 10, 1068 (2019). https://doi.org/10.1021/acs.jpclett.8b03699

    Article  Google Scholar 

  15. V. S. Ajaev and O. A. Kabov, Annu. Rev. Fluid Mech. 53, 203 (2021). https://doi.org/10.1146/annurev-fluid-030620-094158

    Article  Google Scholar 

  16. A. A. Fedorets, JETP Lett. 81 (9), 437 (2005). https://doi.org/10.1134/1.1984025

    Article  ADS  Google Scholar 

  17. A. A. Fedorets, I. V. Marchuk, and O. A. Kabov, Tech. Phys. Lett. 37 (2), 116 (2011). https://doi.org/10.1134/S1063785011020064

    Article  ADS  Google Scholar 

  18. A. A. Fedorets, Tech. Phys. Lett. 38 (11), 988 (2012). https://doi.org/10.1134/S1063785012110077

    Article  ADS  Google Scholar 

  19. J.-I. Yano, Atmos. Chem. Phys. 14, 7019 (2014). https://doi.org/10.5194/acp-14-7019-2014

    Article  ADS  Google Scholar 

  20. A. A. Fedorets, Fluid Dyn. 43 (6), 923 (2008). https://doi.org/10.1134/S0015462808060124

    Article  ADS  Google Scholar 

  21. E. A. Arinshtein and A. A. Fedorets, JETP Lett. 92 (10), 658 (2010). https://doi.org/10.1134/S0021364010220042

    Article  ADS  Google Scholar 

  22. A. A. Fedorets, L. A. Dombrovsky, and P. I. Ryumin, Int. J. Heat Mass Transfer 113, 1054 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.015

    Article  Google Scholar 

  23. A. A. Fedorets and L. A. Dombrovsky, Int. J. Heat Mass Transfer 104, 1268 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.087

    Article  Google Scholar 

  24. A. A. Fedorets, M. Frenkel, E. Bormashenko, and M. Nosonovsky, J. Phys. Chem. Lett. 8 (22), 5599 (2017). https://doi.org/10.1021/acs.jpclett.7b02657

    Article  Google Scholar 

  25. A. A. Fedorets, M. Frenkel, E. Shulzinger, L. A. Dombrovsky, E. Bormashenko, and M. Nosonovsky, Sci. Rep. 7, 1888 (2017). https://doi.org/10.1038/s41598-017-02166-5

    Article  ADS  Google Scholar 

  26. O. A. Kabov, D. V. Zaitsev, D. P. Kirichenko, and V. S. Ajaev, Nanoscale Microscale Thermophys. Eng. 21 (3), 60 (2017). https://doi.org/10.1080/15567265.2017.1279249

    Article  ADS  Google Scholar 

  27. A. A. Fedorets, D. N. Gabyshev, I. V. Marchuk, and O. A. Kabov, Interfacial Phenom. Heat Transfer 4 (4), 337 (2020). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2020037059

    Article  Google Scholar 

  28. A. A. Fedorets, I. V. Marchuk, and O. A. Kabov, Interfacial Phenom. Heat Transfer 1 (1), 51 (2013). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2013007434

    Article  Google Scholar 

  29. A. A. Fedorets, I. V. Marchuk, and O. A. Kabov, JETP Lett. 99, 266 (2014). https://doi.org/10.1134/S0021364014050087

    Article  ADS  Google Scholar 

  30. A. A. Fedorets, I. V. Marchuk, P. A. Strizhak, and O. A. Kabov, Thermophys. Aeromech. 22, 515 (2015). https://doi.org/10.1134/S0869864315040137

    Article  ADS  Google Scholar 

  31. L. Qiu, S. Dubey, F. H. Choo, and F. Duan, Phys. Rev. E 99, 033106 (2019). https://doi.org/10.1103/PhysRevE.99.033106

    Article  ADS  Google Scholar 

  32. Z. Wu, J. Hao, J. Lu, L. Xu, G. Hu, and J. M. Floryan, Phys. Fluids 32, 012107 (2020). https://doi.org/10.1063/1.5132350

    Article  ADS  Google Scholar 

  33. M.-J. Liao and L.-Q. Duan, Processes 9, 142 (2021). https://doi.org/10.3390/pr9010142

    Article  Google Scholar 

  34. K. Wang, X. Ma, F. Chen, and Z. Lan, Langmuir 37, 1779 (2021). https://doi.org/10.1021/acs.langmuir.0c03094

    Article  Google Scholar 

  35. A. Bouillant, T. Mouterde, P. Bourrianne, A. Lagarde, C. Clanet, and D. Quéré, Nat. Phys. 14, 1188 (2018). https://doi.org/10.1038/s41567-018-0275-9

    Article  Google Scholar 

  36. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Pergamon, London, 1966). https://doi.org/10.1016/C2013-0-05328-5

  37. S. Goldstein, Proc. R. Soc. London, Ser. A 123 (791), 225 (1929). https://doi.org/10.1098/rspa.1929.0067

    Article  ADS  Google Scholar 

  38. N. E. Aktaev and T. A. Penkina, Vestn. Tyumen. Gos. Univ., Fiz.-Mat. Model., Neft’, Gas, Energetika 6 (1(21)), 166 (2020). https://doi.org/10.21684/2411-7978-2020-6-1-166-175

    Article  Google Scholar 

  39. N. E. Aktaev, Appl. Math. Modell. 90, 366 (2021). https://doi.org/10.1016/j.apm.2020.09.016

    Article  MathSciNet  Google Scholar 

  40. O. A. Kabov, D. V. Zaitsev, D. P. Kirichenko, and V. S. Ajaev, Interfacial Phenom. Heat Transfer 4, 207 (2016). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2017020203

    Article  Google Scholar 

  41. D. V. Zaitsev, D. P. Kirichenko, V. S. Ajaev, and O. A. Kabov, Phys. Rev. Lett. 119, 094503 (2017). https://doi.org/10.1103/PhysRevLett.119.094503

    Article  ADS  Google Scholar 

  42. P. T. Tsilingiris, Energy Convers. Manage. 49 (5), 1098 (2008). https://doi.org/10.1016/j.enconman.2007.09.015

    Article  Google Scholar 

  43. N. S. Shishkin, Clouds, Precipitation, and Thunderstorm Electricity (Gidrometeoizdat, Leningrad, 1964) [in Russian].

    Google Scholar 

  44. O. Reynolds, Mem. Proc. – Manchester Lit. Philos. Soc. 21, 1 (1881).

    Google Scholar 

  45. R. Savino, D. Paterna, and M. Lappa, J. Fluid Mech. 479, 307 (2003). https://doi.org/10.1017/S0022112002003610

    Article  ADS  Google Scholar 

  46. M. Geri, B. Keshavarz, G. H. McKinley, and J. W. M. Bush, J. Fluid Mech. 833, R3 (2017). https://doi.org/10.1017/jfm.2017.686

    Article  ADS  Google Scholar 

  47. A. A. Fedorets, M. Frenkel, I. Legchenkova, D. V. Shcherbakov, L. A. Dombrovsky, M. Nosonovsky, and E. Bormashenko, Langmuir 35, 15330 (2019). https://doi.org/10.1021/acs.langmuir.9b03135

    Article  Google Scholar 

  48. A. V. Shavlov, V. A. Dzhumandzhi, and S. N. Romanyuk, Phys. Lett. A 376 (1), 39 (2011). https://doi.org/10.1016/j.physleta.2011.10.032

    Article  ADS  Google Scholar 

  49. D. N. Gabyshev, Phys. Wave Phenom. 26 (3), 221 (2018). https://doi.org/10.3103/S1541308X1803007X

    Article  ADS  Google Scholar 

  50. S. N. Andreev and D. N. Gabyshev, Bull. Lebedev Phys. Inst. 45 (9), 257 (2018). https://doi.org/10.3103/S1068335618090014

    Article  ADS  Google Scholar 

  51. H. Brenner, Chem. Eng. Sci. 16, 242 (1961). https://doi.org/10.1016/0009-2509(61)80035-3

    Article  Google Scholar 

  52. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Springer, Dordrecht, 1983). https://doi.org/10.1007/978-94-009-8352-6

Download references

ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge A.A. Fedorets (Tyumen), as well as Profs. I.V. Marchuk and O.A. Kabov (Novosibirsk), for providing initial data on droplet trajectories.

Funding

This study was supported by the Council for Grants of the President of the Russian Federation (grant no. MK-819.2020.2) and, in part, by the Ministry of Science and Higher Education of the Russian Federation (project no. AAAA-A20-120051490005-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Gabyshev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabyshev, D.N., Medvedev, D.N. & Misiiuk, K. Dynamics of Droplets Ejected over the Evaporating Water Surface. Tech. Phys. 66, 1200–1207 (2021). https://doi.org/10.1134/S1063784221090061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221090061

Navigation