Skip to main content
Log in

Thermomagnetic Stability and Current-Carrying Capacity of REBCO Tapes without Copper Coating at 4.2 K

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The current-carrying capacity of second-generation commercial high-temperature superconducting REBCO tapes with a width of 12 mm without a stabilizing copper coating (high-temperature superconductor (HTSC) tapes) in liquid helium has been experimentally investigated at current injection rates up to 350 kA/s. In the experiments, tape samples in the form of rings with junctions are placed in the working volume of a superconducting magnet at 4.2 K. The current in the samples is induced by the transformer method. With an increase in the rate of current injection in the ring-shaped samples, single mechanical defects of the superconducting layer appear in the region of junctions, which causes premature transitions of the samples to the normal state. As a result, the maximum attained currents in the ring samples turned out to be up to 50% lower than the critical currents of short HTSC tape samples at 4.2 K. In conclusion, the analysis of the experimental results is given. Possible explanations for the observed effect are given. In addition, the thermomagnetic stability of two single pancake coils comprised of five isolated turns wound from REBCO tapes supplied from different manufacturers is investigated. The jumps in the magnetic flux are not detected up to an external magnetic field variation rate of 1.7 T/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. Heller, W. H. Fietz, F. Groner, M. Heiduk, M. Hollik, C. Lange, and R. Lietzow, Supercond. Sci. Technol. 31 (5), 055014 (2018). https://doi.org/10.1088/1361-6668/aab5f9

    Article  ADS  Google Scholar 

  2. I. A. Kovalev, M. I. Surin, A. V. Naumov, M. S. Novikov, S. I. Novikov, A. A. Ilin, A. V. Polyakov, V. I. Scherbakov, and D. I. Shutova, Cryogenics 85, 71 (2017). https://doi.org/10.1016/j.cryogenics.2017.05.009

    Article  ADS  Google Scholar 

  3. A. Kumar, J. V. Muruga, L. Jeyan, and A. Agarwal, Physica C 558, 17 (2019). https://doi.org/10.1016/j.physc.2019.01.001

    Article  ADS  Google Scholar 

  4. Y. Zhang, Y. Zhu, X. Wang, Y. Zeng, X. Liu, Y. Lei, Q. Zhou, W. Wang, Y. Gao, Z. Huang, and H. Ye, IEEE Trans. Appl. Supercond. 30 (4), 4601005 (2020). https://doi.org/10.1109/TASC.2020.2971453

    Article  Google Scholar 

  5. A. J. Creely, M. J. Greenwald, S. B. Ballinger, D. Brunner, J. Canik, J. Doody, T. Fülöp, D. Garnier, R.  Granetz, T. K. Gray, C. Holland, et al., J. Plasma Phys. 86 (5), 865860502 (2020). https://doi.org/10.1017/S0022377820001257

    Article  Google Scholar 

  6. http://www.superpower-inc.com/content/2g-hts-wire.

  7. http://www.superox.ru/.

  8. A. A. Il’in, I. A. Kovalev, S. L. Kruglov, A. V. Polyakov, D. I. Shutova, and V. I. Shcherbakov, Kabeli Provoda, No. 1 (375), 10 (2019).

    Google Scholar 

  9. M. Jirsa, M. Rameš, I. Ďuran, T. Melíšek, P. Kováč, and L. Viererbl, Supercond. Sci. Technol. 30, 045010 (2017). https://doi.org/10.1088/1361-6668/aa5bbf

    Article  ADS  Google Scholar 

  10. Y. Yanagisawa, H. Nakagome, T. Takematsuad, T. Takao, N. Sato, M. Takahashi, and H. Maeda, Physica C 471 (15–16), 480 (2011). https://doi.org/10.1016/j.physc.2011.05.003

  11. L. Liu, Y. Zhu, X. Yang, T. Qiu, and Y. Zhao, IEEE Trans. Appl. Supercond. 26 (6), 6603406 (2016). https://doi.org/10.1109/TASC.2016.2555915

    Article  Google Scholar 

  12. M. A. Diaz, H. Shin, H. Ha, and S. Oh, Prog. Supercond. Cryog. 21 (4), 34 (2019). https://doi.org/10.9714/psac.2019.21.4.034

    Article  Google Scholar 

  13. S. L. Kruglov, D. I. Shutova, and V. I. Shcherbakov, Tech. Phys. 62 (2), 237 (2017). https://doi.org/10.1134/S1063784217020165

    Article  Google Scholar 

  14. R. Hancox, Phys Lett. 148 (1), 231 (1966).

    Google Scholar 

  15. N. M. Strickland and S. C. Wimbush, IEEE Trans. Appl. Supercond. 27, 8000505 (2016). https://doi.org/10.1109/TASC.2016.2636561

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Research Center “Kurchatov Institute.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Kruglov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, I.A., Kruglov, S.L., Polyakov, A.V. et al. Thermomagnetic Stability and Current-Carrying Capacity of REBCO Tapes without Copper Coating at 4.2 K. Tech. Phys. 66, 1123–1130 (2021). https://doi.org/10.1134/S1063784221080107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221080107

Navigation