Skip to main content
Log in

Analysis of Oxygen Transport in Structure-Modified Electrodes by the Rotating Disk Electrode Method

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Peculiarities of molecular oxygen transport in platinum–carbon electrodes exhibiting mixed conductivity and containing structure-modified admixtures with structural elements of various types (short and long carbon nanotubes with extended structural elements characterized by different length/diameter ratios and graphene-like materials with practically 2D planes) are studied by the methods of a rotating disk electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. F. B. Spingler, A. Phillips, T. Schuler, M. C. Tucker, and A. Z. Weber, Int. J. Hydrogen Energy 42 (19), 13960 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.036

    Article  Google Scholar 

  2. P. Kanninen, M. Borghei, V. Ruiz, E. I. Kauppinen, and T. Kallio, Int. J. Hydrogen Energy 37 (24), 19082 (2012). https://doi.org/10.1016//j.ijhydene.2012.09.138

    Article  Google Scholar 

  3. J. C. Calderón, N. Mahata, M. F. R. Pereira, J.  L.  Figueiredo, V. R. Fernandes, C. M. Rangel, L. Calvillo, M. J. Lázaro, and E. Pastor, Int. J. Hydrogen Energy 37 (8), 7200 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.029

    Article  Google Scholar 

  4. F. A. Viva, M. M. Bruno, E. A. Franceschini, Y. R. J. Thomas, G. R. Sanchez, O. Solorza-Feria, and H. R. Corti, Int. J. Hydrogen Energy 39 (16), 8821 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.027

  5. T. Nagai, C. Jahn, and H. Jia, J. Electrochem. Soc. 166 (7), F3111 (2019). https://doi.org/10.1149/2.0161907jes

  6. O. V. Korchagin, N. M. Zagudaeva, M. V. Radina, V. A. Bogdanovskaya, and M. R. Tarasevich, Russ. J. Electrochem. 53 (6), 615 (2017). https://doi.org/10.1134/S1023193517060118

    Article  Google Scholar 

  7. P. Boillat, P. Oberholzer, A. Kaestner, R. Siegrist, E. H. Lehmann, G. G. Scherer, and A. Wokau, J. Electrochem. Soc. 159, F210 (2012). https://doi.org/10.1149/2.017207jes

    Article  Google Scholar 

  8. J. Biesdorf, A. Forner-Cuenca, T. J. Schmidt, and P. Boillat, J. Electrochem. Soc. 162 (10), F1243 (2015). https://doi.org/10.1149/2.0861510jes

    Article  Google Scholar 

  9. A. Forner-Cuenca, J. Biesdorf, V. Manzi-Orezzoli, L. Gubler, T. J. Schmidt, and P. Boillat, J. Electrochem. Soc. 163 (13), F1389 (2016). https://doi.org/10.1149/2.0891613jes

    Article  Google Scholar 

  10. U. Beuscher, J. Electrochem. Soc. 153 (9), A1788 (2006). https://doi.org/10.1149/1.2218760

    Article  Google Scholar 

  11. D. R. Baker, D. A. Caulk, K. C. Neyerlin, and M. W. Murphy, J. Electrochem. Soc. 156 (9), B991 (2009). https://doi.org/10.1149/1.3152226

    Article  Google Scholar 

  12. T. Hayashi, Y. Tabe, and T. Chikahisa, ECS Trans. 75 (14), 373 (2016). https://doi.org/10.1149/07514.0373ecst

    Article  Google Scholar 

  13. N. V. Glebova, A. O. Krasnova, A. A. Tomasov, N. K. Zelenina, and A. A. Nechitailov, Tech. Phys. 62 (12), 1863 (2017). https://doi.org/10.1134/S106378421712009X

    Article  Google Scholar 

  14. Yu. V. Pleskov and V. Yu. Filinovskii, The Rotating Disc Electrode (Consultant Bureau, New York, 1976).

    Book  Google Scholar 

  15. Yu. V. Pleskov and V. Yu. Filinovskii, Itogi Nauki Tekh., Ser. Elektrokhim. 11, 57 (1976).

    Google Scholar 

  16. Kinetics of Complex Electrochemical Reactions, Ed. by V. E. Kazarinov (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  17. https://www.fuelcellstore.com/spec-sheets/vulcan-xc72-spec-sheet.pdf.

  18. N. V. Glebova and A. A. Nechitailov, Perspekt. Mater. 9, 71 (2010).

    Google Scholar 

  19. M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda, and A. Ohta, J. Electrochem. Soc. 142, 2572 (1995). https://doi.org/10.1149/1.2050055

    Article  ADS  Google Scholar 

  20. J. Mc Breen, H. Olender, S. Srinivasan, and K. Kordesch, J. Appl. Electrochem. 11, 787 (1981). https://doi.org/10.1007/BF00615184

    Article  Google Scholar 

  21. D. Pantea, H. Darmstadt, S. Kaliaguine, L. Summchen, and C. Roy, Carbon 39, 1147 (2001). https://doi.org/10.1016/S0008-6223(00)00239-6

    Article  Google Scholar 

  22. E. Antolini, Appl. Catal., B 88, 1 (2009). https://doi.org/10.1016/j.apcatb.2008.09.030

    Article  Google Scholar 

  23. A. K. Filippov and M. A. Fedorov, Abstr. 4th Int. Conf. on Electromagnetic Processing of Materials (EPM-2003), Lyon, France, 2003, p. 131.

  24. R. A. Filippov, A. K. Filippov, and A. B. Freidin, St.-Petersburg Int. Workshop on NanoBiotechnologies, Saint-Petersburg, Russia, 2006, p. 74.

  25. http://www.nanotc.ru/producrions/87-cnm-taunit.

  26. A. O. Krasnova, N. V. Glebova, and A. A. Nechitailov, Russ. J. Appl. Chem. 89 (6), 916 (2016). https://doi.org/10.1134/S1070427216060112

    Article  Google Scholar 

  27. V. I. Mazin and E. V. Mazin, RF Patent No. 2581382, Byull. Izobret., No. 11 (2016).

  28. N. V. Glebova, A. O. Krasnova, and A. A. Nechitailov, Russ. J. Appl. Chem. 91 (8), 1262 (2018). https://doi.org/10.1134/S1070427218080037

    Article  Google Scholar 

  29. S. Litster and G. McLean, J. Power Sources 130, 61 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.055

    Article  ADS  Google Scholar 

  30. K. R. Cooper and M. Smith, J. Power Sources 160, 1088 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.086

    Article  ADS  Google Scholar 

  31. A. A. Nechitailov and N. V. Glebova, Russ. J. Electrochem. 50 (8), 751 (2014). https://doi.org/10.1134/S1023193514080102

    Article  Google Scholar 

  32. F. Beck, M. Dolata, E. Grivei, and N. Probst, J. Appl. Electrochem. 31, 845 (2001). https://doi.org/10.1023/A:1017529920916

    Article  Google Scholar 

  33. A. O. Krasnova, N. V. Glebova, D. V. Zhilina, and A. A. Nechitailov, Russ. J. Appl. Chem. 90, 361 (2017). https://doi.org/10.1134/S1070427217030065

    Article  Google Scholar 

  34. A. A. Nechitailov, N. V. Glebova, and A. O. Krasnova, J. Struct. Chem. 60 (9), 1507 (2019). https://doi.org/10.1134/S0022476619090166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Glebova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glebova, N.V., Krasnova, A.O. & Nechitailov, A.A. Analysis of Oxygen Transport in Structure-Modified Electrodes by the Rotating Disk Electrode Method. Tech. Phys. 66, 977–986 (2021). https://doi.org/10.1134/S1063784221070045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221070045

Navigation