Skip to main content
Log in

The Effect of Broadband Rotational Velocity Fluctuations on Flows in Spherical Layers

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We report the results of a numerical investigation of isothermal axisymmetric flows of a viscous incompressible fluid in rotating spherical layers in the presence of random small-amplitude oscillations of the rotational velocity of the inner sphere about the constant (in time) average value. Two cases are considered: the rotation of the inner sphere only and the corotation of spheres with equal angular velocities. It is established that, in these two cases, the flows respond to perturbations in different ways. Comparison with experiment confirms the possibility of an increase in the average velocity in separate areas of the flow with upon an increase in the amplitude of fluctuations, which has been detected in calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. P. Sura, M. Newman, C. Penland, and P. J. Sardeshmukh, J. Atmos. Sci. 62, 1391 (2005). https://doi.org/10.1175/JAS3408.1

    Article  ADS  Google Scholar 

  2. V. Lucarini and T. Bódai, Nonlinearity 30 (7), R32 (2017). https://doi.org/10.1088/1361-6544/aa6b11

    Article  ADS  Google Scholar 

  3. T. Birner and P. D. Williams, J. Atmosph. Sci. 65, 3337 (2008). https://doi.org/10.1175/2008JAS2770.1

    Article  Google Scholar 

  4. Z. Liu, Y.-C. Lai, and J. M. Lopez, Chaos 12 (2), 417 (2002). https://doi.org/10.1063/1.1476948

    Article  ADS  MathSciNet  Google Scholar 

  5. S. M. Bezrukov and I. Vodyanoy, Nature 378, 362 (1995). https://doi.org/10.1038/378362ao

    Article  ADS  Google Scholar 

  6. O. V. Gerashenko, S. L. Ginzburg, and M. A. Pustovoit, JETP Lett. 67 (11), 997 (1998). https://doi.org/10.1134/1.567779

    Article  ADS  Google Scholar 

  7. V. N. Skokov and V. P. Koverda, Tech. Phys. 59 (5), 637 (2014). https://doi.org/10.1134/S1063784214050296

    Article  Google Scholar 

  8. P. S. Landa and A. A. Zaikin, J. Exp. Theor. Phys. 84 (1), 197 (1997). https://doi.org/10.1134/1.558137

    Article  ADS  Google Scholar 

  9. T. Morita, T. Omori, Y. Nakayama, S. Toyabe, and T. Ishikawa, Phys. Rev. E 101, 063101 (2020). https://doi.org/10.1103/PhysRevE.101.063101

    Article  ADS  Google Scholar 

  10. V. V. Pipin and A. G. Kosovichev, Astrophys. J. 867, 145 (2018). https://doi.org/10.3847/1538-4357/aae1fb

    Article  ADS  Google Scholar 

  11. J.-P. Laval, P. Blaineau, N. Leprovost, B. Dubrulle, and F. Daviaud, Phys. Rev. Lett. 96, 204503 (2006). https://doi.org/10.1103/PhysRevLett.96.204503

    Article  ADS  Google Scholar 

  12. D. Zhilenko, O. Krivonosova, M. Gritsevich, and P. Read, Chaos 28, 053110 (2018). https://doi.org/10.1063/1.5011349

    Article  ADS  Google Scholar 

  13. M. L. Waite, Phys. Fluids 29, 126602 (2017). https://doi.org/10.1063/1.5004986

    Article  ADS  Google Scholar 

  14. U. Karban, B. Bugeat, E. Martini, F. Towne, A. V. G. Cavalieri, L. Lesshafft, A. Agarwal, P. Jordan, and T. Colonius, J. Fluid Mech. 900, R5 (2020). https://doi.org/10.1017/jfm.2020.566

    Article  ADS  Google Scholar 

  15. M. Le Bars, D. Cebron, and P. Le Gal, Annu. Rev. Fluid Mech. 47, 163 (2015). https://doi.org/10.1146/annurev-fluid-010814-014556

    Article  ADS  Google Scholar 

  16. M. Hoff, U. Harlander, and C. Egbers, J. Fluid Mech. 789, 589 (2016). https://doi.org/10.1017/jfm.2015.743

    Article  ADS  Google Scholar 

  17. V. G. Kozlov, N. V. Kozlov, and S. V. Subbotin, Acta Astronaut. 130, 43 (2017). https://doi.org/10.1016/j.actaastro.2016.10.018

    Article  ADS  Google Scholar 

  18. D. Yu. Zhilenko and O. E. Krivonosova, Tech. Phys. 64 (7), 933 (2919). https://doi.org/10.1134/S106378421907032

  19. D. Yu. Zhilenko and O. E. Krivonosova, Tech. Phys. Lett. 46 (12), 591 (2020). https://doi.org/10.1134/S1063785020060292

    Article  ADS  Google Scholar 

  20. N. Nikitin, J. Comput. Phys. 217 (2), 759 (2006). https://doi.org/10.1016/j.jcp.2006.01.036

    Article  ADS  MathSciNet  Google Scholar 

  21. D. Yu. Zhilenko and O. E. Krivonosova, Tech. Phys. Lett. 39 (1), 84 (2013). https://doi.org/10.1134/S1063785013010276

    Article  ADS  Google Scholar 

  22. Yu. N. Belyaev and I. M. Yavorskaya, in Advances in Science and Engineering. Fluid and Gas Mechanics, Vol. 15: Viscous Flows in Rotating Spherical Layers and Their Stability, Ed. by A. I. Mikhailov (VINITI, Moscow, 1980), p. 3 [in Russian].

  23. R. R. Kerswell, J. Fluid Mech. 382, 283 (1999). https://doi.org/10.1017/S0022112098003954

    Article  ADS  MathSciNet  Google Scholar 

  24. D. Yu. Zhilenko and O. E. Krivonosova, JETP Lett. 104, 531 (2016). https://doi.org/10.1134/S0021364016200133

    Article  ADS  Google Scholar 

  25. K. Nakabayashi, W. Sha, and Y. Tsuchida, J. Fluid Mech. 534, 327 (2005). https://doi.org/10.1017/S0022112005004659

    Article  ADS  Google Scholar 

  26. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon, Oxford, 1987).

  27. C. Lissandrello, L. Li, K. L. Ekinci, and V. Yakhot, J. Fluid Mech. 778, R3 (2015). https://doi.org/10.1017/jfm.2015.402

    Article  ADS  Google Scholar 

  28. P. J. Schmid, Annu. Rev. Fluid Mech. 39, 129 (2007). https://doi.org/10.1146/annurev.fluid.38.050304.092139

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Foundation for Basic Research, projects nos. 18-08-00074 and 19-05-00028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Zhilenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilenko, D.Y., Krivonosova, O.E. The Effect of Broadband Rotational Velocity Fluctuations on Flows in Spherical Layers. Tech. Phys. 66, 1330–1337 (2021). https://doi.org/10.1134/S1063784221060232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221060232

Navigation