Skip to main content
Log in

Ferromagnetic Resonance for Electromagnetic Waves Passing through Metal Superlattices

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Ferromagnetic-resonance-induced variations in the transmittance of Fe films and Fe/Cr superlattices are studied in a microwave frequency interval of 26–38 GHz. The shape of the resonance line is described using a model in which the asymmetry is provided by a Lorentzian dispersion curve added to the absorption curve. It is shown that the line shape is well described using the model for superlattices with continuous Fe and Cr layers and Fe films. However, only qualitative agreement is obtained for superlattices with thin Fe and Cr layers. The experimental field dependence of the transmission coefficient substantially differs from the model results in the presence of the fields that are less than the field of ferromagnetic resonance for superlattices with giant magnetoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. J. Krebs, P. Lubitz, A. Chaiken, and G. A. Prinz, J. Appl. Phys. 69, 4795 (1991).

    Article  ADS  Google Scholar 

  2. B. K. Kuanr, A. V. Kuanr, P. Grunberg, and G. Nimtz, Phys. Lett. A 221, 245 (1996).

    Article  ADS  Google Scholar 

  3. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, and V. I. Minin, J. Mang. Magn. Mater. 177181, 1205 (1998).

  4. M. Farle, Rep. Prog. Phys. 61 (7), 755 (1998).

    Article  ADS  Google Scholar 

  5. D. P. Belozorov, V. N. Derkach, S. V. Nedukh, A.  G.  Ravlik, S. T. Roschenko, I. G. Shipkova, S. I. Tarapov, and F. Yildiz, Int. J. Infrared Millimeter Waves 22, 1669 (2001).

    Article  Google Scholar 

  6. T. Rausch, T. Szczurek, and M. Schlesinger, J. Appl. Phys. 85, 314 (1999).

    Article  ADS  Google Scholar 

  7. A. B. Granovsky, A. A. Kozlov, T. V. Bagmut, S. V. Nedukh, S. I. Tarapov, and J. P. Clerc, Phys. Solid State 47 (4), 738 (2005). https://doi.org/10.1134/1.1913990

    Article  ADS  Google Scholar 

  8. V. V. Ustinov, A. B. Rinkevich, and L. N. Romashev, J. Mang. Magn. Mater. 198199, 82 (1999).

  9. J. C. Jackuet and T. Valet, Mater. Res. Soc. Symp. Proc. 384, 477 (1995).

    Article  Google Scholar 

  10. Z. Frait, P. Sturc, K. Tems, Y. Bruynseraede, and I. Vavra, Solid State Commun. 112, 569 (1999).

    Article  ADS  Google Scholar 

  11. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, and E. A. Kuznetsov, Tech. Phys. Lett. 33, 771 (2007). https://doi.org/10.1134/S1063785007090179

    Article  ADS  Google Scholar 

  12. D. E. Endean, J. N. Heyman, S. Maat, and E. Dan Dahlberg, Phys. Rev. 84, 212405 (2011).

    Article  Google Scholar 

  13. I. Neudecker, G. Woltersdorf, B. Heinrich, T. Okuno, G. Gubbiotti, and C. H. Back, J. Mang. Magn. Mater. 307, 148 (2006).

    Article  ADS  Google Scholar 

  14. M. Kostylev, Appl. Phys. 113, 053908 (2013).

    Article  Google Scholar 

  15. N. G. Bebenin, J. Mang. Magn. Mater. 161, 65 (1995).

    Article  Google Scholar 

  16. A. B. Drovosekov, O. V. Zhotikova, N. M. Kreines, D. I. Kholin, V. F. Meshcheryakov, M. A. Milyaev, L. N. Romashev, and V. V. Ustinov, J. Exp. Theor. Phys. 89, 986 (1999). https://doi.org/10.1134/1.558941

    Article  ADS  Google Scholar 

  17. S. O. Demokritov, A. B. Drovosekov, N. M. Kreines, H. Nembach, M. Rickart, and D. I. Kholin, J. Exp. Theor. Phys. 95, 1062 (2002). https://doi.org/10.1134/1.1537298

    Article  ADS  Google Scholar 

  18. S. O. Demokritov, A. B. Drovosekov, D. I. Kholin, N. M. Kreines, H. Nembach, and M. Rickart, J. Mang. Magn. Mater. 272276, e963 (2004).

  19. A. B. Rinkevich, M. A. Milyaev, and L. N. Romashev, Phys. Met. Metallogr. 120 (3), 247 (2019). https://doi.org/10.1134/S0031918X19030116

    Article  ADS  Google Scholar 

  20. A. B. Rinkevich, L. N. Romashev, V. V. Ustinov, and E. A. Kuznetsov, J. Mang. Magn. Mater. 254255, 603 (2003).

  21. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, M. A. Milyaev, A. M. Burkhanov, N. N. Sidun, and E. A. Kuznetsov, Phys. Met. Metallogr. 99, 486 (2005). https://www.elibrary.ru/item.asp?id=13489112

    Google Scholar 

  22. F. J. Dyson, Phys. Rev. 15 (4), 349 (1955).

    Article  ADS  Google Scholar 

  23. G. Feher and A. F. Kip, Phys. Rev. 98 (8), 337 (1955).

    Article  ADS  Google Scholar 

  24. S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva, and J. P. Nibarger, J. Appl. Phys. 99, 093909 (2006).

    Article  ADS  Google Scholar 

  25. J. P. Joshi, R. Gupta, A. K. Sood, S. V. Bhat, A. R. Raju, and C. N. R. Rao, Phys. Rev. B 65, 024410 (2001). https://doi.org/10.1103/PhysRevB.65.024410

    Article  ADS  Google Scholar 

  26. K. W. Joh, C. H. Lee, C. E. Lee, N. H. Hur, and H.-C. Ri, J. Phys.: Condens. Matter 15, 4161 (2003).

    ADS  Google Scholar 

  27. C. T. Boone, J. M. Shaw, H. T. Nembach, and T. J. Silva, J. Appl. Phys. 117, 223910 (2015).

    Article  ADS  Google Scholar 

  28. C. P. Poole, Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques (Wiley, New York, 1967).

    Google Scholar 

  29. H. Kodera, J. Phys. Soc. Jpn. 28 (1), 89 (1970).

    Article  ADS  Google Scholar 

  30. N. M. Kreines, Low Temp. Phys. 28, 581 (2002). https://doi.org/10.1063/1.1511701

    Article  ADS  Google Scholar 

  31. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC, New York, 1996).

    Google Scholar 

  32. N. A. Semenov, Technical Electrodynamics (Svyaz’, Moscow, 1973) [in Russian].

    Google Scholar 

  33. V. V. Ustinov, A. B. Rinkevich, I. G. Vazhenina, and M. A. Milyaev, J. Exp. Theor. Phys. 131, 139 (2020). https://doi.org/10.1134/S1063776120070171

    Article  ADS  Google Scholar 

  34. A. B. Rinkevich, D. V. Perov, V. O. Vaskovsky, A. N. Gorkovenko, and E. A. Kuznetsov, IEEE Trans. Nanotechnol. 16 (6), 1067 (2017).

    Article  ADS  Google Scholar 

  35. R. E. Camley and J. Barnas, Phys. Rev. Lett. 63 (6), 664 (1989).

    Article  ADS  Google Scholar 

  36. S. Mizukami, Y. Ando, and T. Miyazaki, Phys. Rev. B 66, 104413 (2002).

    Article  ADS  Google Scholar 

  37. R. Urban, G. Woltersdorf, and B. Heinrich, Phys. Rev. Lett. 87 (21), 217204 (2001).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the “Spin” (project АААА-А18-118020290104-2) and “Funktsiya” (project АААА-А19-119012990095-0) programs. The results of Section 2 were obtained with the financial support of the Russian Science Foundation (project no. 17-12-01002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Rinkevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rinkevich, A.B., Kuznetsov, E.A., Perov, D.V. et al. Ferromagnetic Resonance for Electromagnetic Waves Passing through Metal Superlattices. Tech. Phys. 66, 917–928 (2021). https://doi.org/10.1134/S1063784221060153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221060153

Navigation