Skip to main content
Log in

Inelastic Stretching of a Single-Wire Copper Conductor under Unlimited Local Strains at Positive Temperature

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Experimental and theoretical data for strains arising in a single-wire copper conductor experiencing a current load are reported. The conductor has been examined under a JSM-6390L scanning electron microscope. A mathematical model for the stress–strain state of a stretched copper rod at 700°C has been developed on the basis of the nonlinear problem of construction mechanics. Mechanical forces that lead to necking in a single-wire copper conductor through which extra current passes have been determined. The mathematical model has been reduced to simple analytical relationships, which can be applied in forensic fire investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Yu. Mokryak, I. D. Cheshko, and V. V. Pen’kov, Probl. Uprav. Riskami Tekhnosfere, No. 4 (32), 41 (2014).

    Google Scholar 

  2. I. D. Cheshko, A. Yu. Mokryak, and S. V. Skodtaev, Vestn. St. Petersburg. Univ. Gos. Protivopozh. Sluzhby MChS Rossii, No. 1, 41 (2015).

    Google Scholar 

  3. A. I. Nedobitkov, Pozharovzryvobezopasnost 28 (4), 42 (2019). https://doi.org/10.18322/PVB.2019.28.04.42-50

    Article  Google Scholar 

  4. V. I. Spitsyn and O. A. Troitskii, Electroplastic Deformation of Metals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  5. V. E. Egorushkin, V. E. Panin, and A. V. Panin, Phys. Mesomech. 21, 390 (2018). https://doi.org/10.1134/S1029959918050028

    Article  Google Scholar 

  6. P. A. Lukash, Fundamentals of Nonlinear Structural Mechanics (Stroiizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  7. A. P. Filin, The Applied Mechanics of a Solid Deformable Body, Vol. 1: Resistance of Materials with Elements of Continuum Theory and Structural Mechanics (Nauka, Moscow, 1975) [in Russian].

  8. V. A. Birger and R. R. Mavlyutov, Strength of Materials (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  9. S. P. Timoshenko and J. M. Gere, Mechanics of Materials (Van Nostrand Reinhold, New York, 1972).

    Google Scholar 

  10. Ya. G. Panovko and I. N. Gubanova, Stability and Oscillation of Elastic Systems: Modern Concepts, Paradoxes and Errors (Nat. Aeronaut. Space Admin., Washington, 1973).

    Google Scholar 

  11. V. I. Fedos’ev, Strength of Materials (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  12. S. V. Serensen, V. P. Kogaev, and R. M. Shneiderovich, Load-Bearing Capacity and Calculation of Machine Parts for Strength (Mashinostroenie, Moscow, 1975) [in Russian].

    Google Scholar 

  13. I. A. Birger, B. F. Shorr, and G. B. Iosilevich, Computation of Machine-Component Strength: Handbook (Mashinostroenie, Moscow, 1979) [in Russian].

    Google Scholar 

  14. N. M. Belyayev, Strength of Materials (Mir, Moscow, 1979). https://archive.org/details/BelyaevStrengthOfMaterialsMir1979/page/n15/mode/2up

  15. A. K. Nikolaev and S. A. Kostin, Copper and High-Temperature Alloys (DPK-Press, Moscow, 2012) [in Russian].

    Google Scholar 

  16. V. I. Sakalo, Yu. S. Guseva, and T. V. Inshakova, Vestn. Bryansk. Gos. Tekh. Univ., No. 3(47), 94 (2015).

  17. W. Nowacki, Teoria Sprężystości (Państwowe Wydawnictwo Naukowe, Warszawa, 1970).

    MATH  Google Scholar 

  18. L. M. Kachanov, Fundamentals of the Theory of Plasticity (Dover, New York, 2014).

    Google Scholar 

  19. I. N. Bronshtein and K. A. Semendyayev, A Guide-Book to Mathematics for Technologists and Engineers (Pegamon, Oxford, 1964).

    MATH  Google Scholar 

  20. V. Babrauskas, J. Fire Sci. 36, 438 (2018).

    Article  Google Scholar 

  21. V. Babrauskas, Rev. Fire Saf. J. 89, 7 (2017).

    Article  Google Scholar 

  22. V. Babrauskas, “Electrical Fires,” in SFPE Handbook of Fire Protection Engineering, 5th ed. (Springer, New York, 2016), p. 662.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Microscopic studies were carried out in the Veritas center at Serikbaev East Kazakhstan Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Nedobitkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedobitkov, A.I., Abdeyev, B.M. Inelastic Stretching of a Single-Wire Copper Conductor under Unlimited Local Strains at Positive Temperature. Tech. Phys. 66, 902–908 (2021). https://doi.org/10.1134/S1063784221060128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221060128

Navigation