Skip to main content
Log in

Ignition of Boron-Containing High-Energy Materials Based on an Oxidizer and Polymer Binder

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The use of aluminum borides is a promising direction in the development of modern propellant compositions and aerial vehicles. We present experimental data on the kinetics of oxidation of microscale powders of aluminum, amorphous boron, and the aluminum borides AlB2 and AlB12 in air upon heating at a constant rate of 10°C/min and the results of laser-assisted ignition of high-energy materials that contain these metal powders and are based on ammonium perchlorate, ammonium nitrate, and an inert binder or an energetic combustible binder. We show that the use of the boron-containing powders enables us to lower the onset temperature of oxidation and the temperature of intense oxidation, while increasing their oxidation effectiveness, compared to pure aluminum. The dependences of ignition delay time on the heat flux show that the AlB2 and AlB12 powders are the most effective metal fuel components for solid propellants based on ammonium perchlorate, ammonium nitrate, and an energetic binder: they display the shortest ignition delay time and require the lowest heat input for ignition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. L. Dreizin, Prog. Energy Combust. Sci. 35 (2), 141 (2009). https://doi.org/10.1016/j.pecs.2008.09.001

    Article  Google Scholar 

  2. A. Gromov, L. T. Deluca, A. P. Il’in, U. Teipel, A. Petrova, and D. Prokopiev, Int. J. Energ. Mater. Chem. Propul. 13 (5), 399 (2014). https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2014011255

    Article  Google Scholar 

  3. Energy-Intensive Fuels for Aviation and Rocket Engines, Ed. by L. S. Yanovskii (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  4. D. S. Sundaram, V. Yang, and V. E. Zarko, Combust., Explos. Shock Waves 51 (2), 173 (2015). https://doi.org/10.1134/S0010508215020045

    Article  Google Scholar 

  5. Y. Sun, K. L. Chintersingh, M. Schoenitz, and E. L. Dreizin, J. Phys. Chem. C 123 (18), 11807 (2019). https://doi.org/10.1021/acs.jpcc.9b03363

    Article  Google Scholar 

  6. X. Liu, J. Gonzales, M. Schoenitz, and E. L. Dreizin, Thermochim. Acta 652, 17 (2017).

    Article  Google Scholar 

  7. D. Yu, C. Kong, J.-K. Zhuo, S. Q. Li, and Q. Yao, Sci. China: Technol. Sci. 58 (12), 2016 (2015). https://doi.org/10.1007/s11431-015-5841-0

    Article  ADS  Google Scholar 

  8. V. Arkhipov, L. Savelieva, and P. Ponomarev, MATEC Web Conf. 110, 01075 (2017). https://doi.org/10.1051/matecconf/201711001075

    Article  Google Scholar 

  9. V. A. Arkhipov, A. S. Zhukov, V. T. Kuznetsov, N. N. Zolotorev, N. A. Osipova, and K. G. Perfil’eva, Combust., Explos. Shock Waves 54 (6), 689 (2018). https://doi.org/10.1134/S0010508218060084

    Article  Google Scholar 

  10. A. G. Korotkikh, V. A. Arkhipov, I. V. Sorokin, and E. A. Selikhova, Khim. Fiz. Mezoskop. 20 (1), 5 (2018).

    Google Scholar 

  11. M. L. Whittaker, R. A. Cutler, and P. E. Anderson, MRS Online Proc. Libr. 1405, 96 (2011). https://doi.org/10.1557/opl.2012.64

    Article  Google Scholar 

  12. D. Liang, R. Xiao, J. Liu, and Y. Wang, Aerosp. Sci. Technol. 84, 1081 (2019).

    Article  Google Scholar 

  13. S. Adil and B. S. Murty, Thermochim. Acta 678, 178306 (2019).

    Article  Google Scholar 

  14. M. L. Whittaker, H. Y. Sohn, and R. A. Cutler, J. Solid State Chem. 207, 163 (2013).

    Article  ADS  Google Scholar 

  15. I. Zhukov, A. Vorozhtsov, V. Promakhov, Y. Dubkova, A. Zhukov, and A. Khrustalev, MATEC Web Conf. 243 (00015), 1 (2018). https://doi.org/10.1051/matecconf/201824300015

    Article  Google Scholar 

  16. D. A. Yagodnikov, A. V. Voronetskii, and V. I. Sarab’ev, Combust., Explos. Shock Waves 52 (3), 300 (2016). https://doi.org/10.1134/S0010508216030072

    Article  Google Scholar 

  17. V. V. Promakhov, M. Kh. Ziatdinov, I. A. Zhukov, S. A. Vorozhtsov, A. E. Matveev, and S. S. Titov, Polzunov. Vestn., No. 4-1, 76 (2016).

  18. I. A. Zhukov, M. K. Ziatdinov, A. B. Vorozhtsov, A. S. Zhukov, S. A. Vorozhtsov, and V. V. Promakhov, Russ. Phys. J. 59 (8), 1324 (2016). https://doi.org/10.1007/s11182-016-0911-8

    Article  Google Scholar 

  19. S. L. Guseinov, S. G. Fedorov, A. Y. Tuzov, S. I. Malashin, A. I. Drachev, M. R. Kisilev, B. V. Pevchenko, and O. V. Voron’ko, Nanotechnol. Russia 10 (5–6), 420 (2015). https://doi.org/10.1134/S199507801503009X

  20. N. V. Kirillova, A. I. Kharlamov, and S. V. Loichenko, Inorg. Mater. 36 (8), 776 (2000). https://doi.org/10.1007/BF02758596

    Article  Google Scholar 

  21. A. G. Korotkikh, K. V. Slyusarskii, and I. V. Sorokin, Khim. Fiz. Mezoskop. 22 (2), 164 (2020). https://doi.org/10.15350/17270529.2020.2.16

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00588.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Korotkikh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkikh, A.G., Sorokin, I.V., Slyusarskiy, K.V. et al. Ignition of Boron-Containing High-Energy Materials Based on an Oxidizer and Polymer Binder. Tech. Phys. 66, 895–901 (2021). https://doi.org/10.1134/S1063784221060104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221060104

Navigation