Skip to main content
Log in

Relaxation of Mechanical Stress in Epitaxial Films of Cubic Silicon Carbide on Silicon Substrates with a Buffer Porous Layer

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of this study quantitatively and qualitatively illustrate the processes of mismatch stress relaxation upon epitaxy of cubic silicon carbide on silicon. The mechanical stress distribution in 3C–SiC/Si and 3C–SiC/por-Si heterostructures is analyzed. It is shown that a porous buffer layer plays a role in the reduction of mismatch stress. The data of the theoretical study are verified by experimental residual stress in 3C–SiC/Si and 3C–SiC/por-Si samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. A. Lebedev, E. V. Kalinina, and V. V. Kozlovski, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12, 364 (2018). https://doi.org/10.1134/S1027451018020283

    Article  Google Scholar 

  2. F. Liu, C. Carraro, J. Chu, and R. Maboudian, J. Appl. Phys. 106, 013505 (2009). https://doi.org/10.1063/1.3157184

    Article  ADS  Google Scholar 

  3. A. A. Volinsky, G. Kravchenko, P. Waters, J. D. Reddy, C. Locke, C. Frewin, and S. E. Saddow, Mater. Res. Soc. Symp. Proc. 1069, D03-05 (2008). https://doi.org/10.1557/PROC-1069-D03-05

    Article  Google Scholar 

  4. D. N. Talwar, L. Wan, C. C. Tin, and Z. C. Feng, J. Mater. Sci. Eng. 6 (2), 1000324 (2017). https://doi.org/10.4172/2169-0022.1000324

    Article  Google Scholar 

  5. H. Mukaida, H. Okumura, J. H. Lee, H. Daimon, E. Sakuma, S. Misawa, K. Endo, and S. Yoshida, J. Appl. Phys. 62, 254 (1987). https://doi.org/10.1063/1.339191

    Article  ADS  Google Scholar 

  6. R. S. Telyatnik, A. V. Osipov, and S. A. Kukushkin, Phys. Solid State 57, 162 (2015). https://doi.org/10.1134/S106378341501031X

    Article  ADS  Google Scholar 

  7. O. M. Sreseli, D. N. Goryachev, V. Yu. Osipov, L. V. Belyakov, S. P. Vul’, I. T. Serenkov, V. I. Sakharov, and A. Ya. Vul’, Semiconductors 36 (5), 574 (2002). https://doi.org/10.1134/1.1478551

    Article  ADS  Google Scholar 

  8. N. I. Kargin, A. O. Sultanov, A. V. Bondarenko, V. P. Bondarenko, S. V. Red’ko, and A. S. Ionov, Russ. Microelectron. 43 (8), 531 (2014). https://doi.org/10.1134/S106373971408006X

    Article  Google Scholar 

  9. A. Kelly and G. W. Groves, Crystallography and Crystal Defects (Longman, London, 1970).

    Google Scholar 

  10. http://www.ioffe.ru/SVA/NSM/Semicond/SiC/mechanic.html.

  11. H. G. Hahn, Elastizitätstheorie. Grundlagen der linearen Theorie und Anwendungen auf eindimensionale, ebene und räumliche Probleme (Teubner, Stuttgart, 1985).

    MATH  Google Scholar 

  12. D. Olego, M. Cardona, and P. Vogl, Phys. Rev. B 25 (6), 3878 (1982). https://doi.org/10.1103/PhysRevB.25.3878

    Article  ADS  Google Scholar 

  13. Gorelik S. S., L. N. Rastorguev, and Yu. A. Skakov, X-Ray and Electro-Optical Analysis (Metallurgiya, Moscow, 1970), p. 126 [in Russian].

    Google Scholar 

  14. R. H. Saul, J. Appl. Phys. 40, 3273 (1969). https://doi.org/10.1063/1.1658174

    Article  ADS  Google Scholar 

  15. G. H. Olsen and M. Ettenberg, J. Appl. Phys. 48, 2543 (1977). https://doi.org/10.1063/1.323970

    Article  ADS  Google Scholar 

  16. A. S. Gusev, N. I. Kargin, S. M. Ryndya, G. K. Safaraliev, N. V. Siglovaya, A. O. Sultanov, and A. A. Timofeev, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 13 (2), 280 (2019). https://doi.org/10.1134/S1027451019020083

    Article  Google Scholar 

  17. I. Yu. Smolina, M. O. Eremin, P. V. Makarov, S. P. Buyakova, S. N. Kul’kov, and E. P. Evtushenko, Vestn. Tomsk. Gos. Univ. Matem. Mekh., No. 5(25), 78 (2013).

  18. C. M. Su, A. Fekade, M. Spencer, and M. Wuttig, J. Appl. Phys. 77, 1280 (1995). https://doi.org/10.1063/1.359579

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the Heterostructural Microwave Electronics and Physics of Wide Bandgap Semiconductors Center for Collective Use of National Research Nuclear University “Moscow Engineering Physics Institute.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Gusev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Baldina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, A.S., Kargin, N.I., Ryndya, S.M. et al. Relaxation of Mechanical Stress in Epitaxial Films of Cubic Silicon Carbide on Silicon Substrates with a Buffer Porous Layer. Tech. Phys. 66, 869–877 (2021). https://doi.org/10.1134/S1063784221060074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221060074

Navigation