Skip to main content
Log in

Methods of Parametric Resonance Excitation in the Scheme of an Optical Magnetometric Sensor

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An experimental comparison of the methods for modulating the parameters of a transverse to the external magnetic field resonant pump radiation in the two-beam scheme of an optical magnetometric sensor (the Bell–Blum scheme), as well as a comparison of these methods with the standard method of radio-frequency excitation of magnetic resonance under conditions of strong laser pumping, is carried out. It is shown that, although the standard method allows for greater suppression of the spin-exchange broadening of the magnetic resonance line by pump light, the Bell–Blum scheme is characterized by advantages that allow obtaining close sensitivities when modulating both the intensity and the polarization of the pump light; at the same time, the Bell–Blum scheme is potentially characterized by a high speed, which is essential for the problems of magnetoencephalography and magnetic resonance imaging of ultraweak fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. Budker and M. Romalis, Nat. Phys. 3, 227 (2007). https://doi.org/10.1038/nphys566

    Article  Google Scholar 

  2. M. Hämälinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, Rev. Mod. Phys. 65 (2), 413 (1993). https://doi.org/10.1103/RevModPhys.65.413

    Article  ADS  Google Scholar 

  3. A. M. Coffey, M. L. Truong, and E. Y. Chekmenev, J. Magn. Reson. 237, 169 (2013). https://doi.org/10.1016/j.jmr.2013.10.013

    Article  ADS  Google Scholar 

  4. W. E. Bell and A. L. Bloom, Phys. Rev. Lett. 6 (6), 280 (1961). https://doi.org/10.1103/PhysRevLett.6.280

    Article  ADS  Google Scholar 

  5. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, Nature 422, 596 (2003). https://doi.org/10.1038/nature01484

    Article  ADS  Google Scholar 

  6. H. B. Dang, A. C. Maloof, and M. V. Romalis, Appl. Phys. Lett. 97 (15), 151110 (2010). https://doi.org/10.1063/1.3491215

    Article  ADS  Google Scholar 

  7. T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, Phys. Rev. A 84, 043416 (2011). https://doi.org/10.1103/PhysRevA.84.043416

    Article  ADS  Google Scholar 

  8. V. Schultze, B. Schillig, R. IJsselsteijn, T. Scholtes, S. Woetzel, and R. Stolz, Sensors 17 (3), 561 (2017). https://doi.org/10.3390/s17030561

    Article  ADS  Google Scholar 

  9. N. D. Bhaskar, J. Camparo, W. Happer, and A. Sharma, Phys. Rev. A 23, 3048 (1981). https://doi.org/10.1103/PhysRevA.23.3048

    Article  ADS  Google Scholar 

  10. A. K. Vershovskii, A. S. Pazgalev, and M. V. Petrenko, Tech. Phys. Lett. 46 (9), 877 (2020). https://doi.org/10.1134/S1063785020090126

    Article  ADS  Google Scholar 

  11. E. N. Popov, V. A. Bobrikova, S. P. Voskoboinikov, K. A. Barantsev, S. M. Ustinov, A. N. Litvinov, A. K. Vershovskii, S. P. Dmitriev, V. A. Kartoshkin, A. S. Pazgalev, and M. V. Petrenko, JETP Lett. 108, 513 (2018). https://doi.org/10.1134/S0021364018200122

    Article  ADS  Google Scholar 

  12. I. Fescenko, P. Knowles, A. Weis, and E. Breschi, Opt. Express 21 (13), 15121 (2013). https://doi.org/10.1364/OE.21.015121

    Article  ADS  Google Scholar 

  13. A. K. Vershovskii, S. P. Dmitriev, G. G. Kozlov, A. S. Pazgalev, and M. V. Petrenko, Tech. Phys. 65 (8), 1193 (2020). https://doi.org/10.1134/S1063784220080204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Vershovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershovskii, A.K., Petrenko, M.V. Methods of Parametric Resonance Excitation in the Scheme of an Optical Magnetometric Sensor. Tech. Phys. 66, 821–826 (2021). https://doi.org/10.1134/S106378422105025X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422105025X

Navigation