Skip to main content
Log in

Degenerate Four-Wave Mixing by Transmission Holographic Gratings in a Bi12TiO20 Crystal of the (110)-Cut

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The regularities of stationary degenerate four-wave mixing by transmission holographic gratings formed in a Bi12TiO20 crystal of (110)-cut are analyzed. A system of differential equations, which can be used to find the components of the vector amplitudes of linearly polarized light waves with four-wave mixing by phase and phase–amplitude holographic gratings, is obtained. Linear electrooptical, photoelastic, and inverse piezoelectric effects, as well as natural optical activity, circular dichroism, and crystal absorption, are taken into account in the theoretical model. The values of the orientation angle and the crystal thickness at which the reflection coefficient can be maximized are found. It is found experimentally that the reflection coefficient in the Bi12TiO20 crystal of the (110)-cut with a thickness of 7.7 mm can reach 2.4 with an optimal choice of the orientation angle. It is shown that the theoretical calculations and experimental data are in best agreement when the phase–amplitude structure of the transmission holographic gratings formed in the Bi12TiO20 crystal is taken into account in the mathematical model of diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. I. Stepanov, E. V. Ivakin, and A. S. Rubanov, Sov. Phys.-Dokl. 16, 46 (1971).

    ADS  Google Scholar 

  2. S. P. Woerdman, Opt. Commun. 2, 212 (1970).

    Article  ADS  Google Scholar 

  3. B. Ya. Zeldovich, V. I. Popovichev, V. V. Ragulskii, and F. S. Faisullov, JETP Lett. 15, 109 (1972).

    ADS  Google Scholar 

  4. O. Yu. Nosach, V. I. Popovichev, V. V. Ragulskii, and F. S. Faisullov, JETP Lett. 16, 435 (1972).

    ADS  Google Scholar 

  5. R. W. Hellwarth, J. Opt. Soc. Am. 67 (1), 1 (1977).

    Article  ADS  Google Scholar 

  6. A. Yariv and D. M. Pepper, Opt. Lett. 1 (1), 16 (1977).

    Article  ADS  Google Scholar 

  7. D. M. Bloom and G. E. Bjorklund, Appl. Phys. Lett. 31 (9), 592 (1977).

    Article  ADS  Google Scholar 

  8. S. L. Jensen and R. W. Hellwarth, Appl. Phys. Lett. 32 (3), 166 (1978).

    Article  ADS  Google Scholar 

  9. I. V. Brito, M. R. R. Gesualdi, J. Ricardo, F. Palácios, M. Muramatsu, and J. L. Valin, Opt. Commun. 286, 103 (2013).

    Article  ADS  Google Scholar 

  10. B. Zhang, Q. Feng, and Y. Liang, Opt. Eng. 55 (9), 091406 (2016).

    Article  ADS  Google Scholar 

  11. L. Tao, H. M. Daghighian, and C. S. Levin, J. Med. Imaging 4 (1), 011010 (2017).

    Article  Google Scholar 

  12. X. Yang, M. Wang, C. Lou, and P. Zhang, Opt. Express 26 (6), 7281 (2018).

    Article  ADS  Google Scholar 

  13. C. H. Kwak, G. Y. Kim, and B. Javidi, Opt. Commun. 437, 95 (2019).

    Article  ADS  Google Scholar 

  14. S. I. Stepanov, Rep. Prog. Phys. 57 (1), 39 (1994).

    Article  ADS  Google Scholar 

  15. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

    Google Scholar 

  16. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  17. J. P. Huignard, J. P. Herriau, P. Aubourg, and E. Spitz, Opt. Lett. 4 (1), 21 (1978).

    Article  ADS  Google Scholar 

  18. S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, Sov. Phys.-Tech. Phys. 29, 703 (1984).

    Google Scholar 

  19. S. I. Stepanov and M. P. Petrov, Opt. Commun. 53 (1), 64 (1985).

    Article  ADS  Google Scholar 

  20. A. Erdmann and R. Kowarschik, IEEE J. Quantum Electron. 24 (2), 155 (1988).

    Article  ADS  Google Scholar 

  21. A. A. Izvanov, A. E. Mandel’, N. D. Khat’kov, and S. M. Shandarov, Avtometriya 2, 79 (1986).

  22. S. M. Shandarov, V. V. Shepelevich, and N. D. Khatkov, Opt. Spectrosc. 70 (5), 627 (1991).

    ADS  Google Scholar 

  23. A. V. Gusel’nikova, S. M. Shandarov, A. M. Plesovskikh, R. V. Romashko, and Yu. N. Kulchin, J. Opt. Technol. 73 (11), 760 (2006).

    Article  ADS  Google Scholar 

  24. R. V. Litvinov, S. I. Polkovnikov, and S. M. Shandarov, Quantum Electron. 31 (2), 167 (2001).

    Article  ADS  Google Scholar 

  25. A. V. Makarevich, V. V. Shepelevich, and S. M. Shandarov, Tech. Phys. 62 (5), 785 (2017). https://doi.org/10.1134/S1063784217050188

    Article  Google Scholar 

  26. V. I. Burkov, Yu. F. Kargin, V. A. Kizel’, V. I. Sitnikova, and V. M. Skorikov, JEPT Lett. 38 (7), 390 (1983).

    ADS  Google Scholar 

  27. S. G. Odulov, M. S. Soskin, and A. I. Khizhnyak, Lasers on Dynamic Gratings (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  28. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).

    Article  Google Scholar 

  29. S. I. Stepanov, S. M. Shandarov, and N. D. Khatkov, Sov. Phys.-Solid State 29, 1754 (1987).

    Google Scholar 

  30. V. V. Shepelevich, N. N. Egorov, P. I. Ropot, and A. A. Firsov, Quantum Electron. 32 (1), 87 (2002).

    Article  ADS  Google Scholar 

  31. A. V. Makarevich, V. V. Shepelevich, V. N. Naunyko, M. A. Amanova, and S. M. Shandarov, Crystallogr. Rep. 64 (5), 780 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education of the Republic of Belarus as a part of state assignment 1.2.01 of the State Program of Scientific Research “Photonics, Optoelectronics, and Microelectronics” for 2016–2020 and by the Ministry of Science and Higher Education of the Russian Federation as a part of a state assignment for 2020–2023 (project no. FEWM-2020-0038/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Naunyka.

Ethics declarations

The authors declare that there are no conflicts of interest.

Additional information

Translated by I. Obrezanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naunyka, V.N., Nichiporko, S.F., Makarevich, A.V. et al. Degenerate Four-Wave Mixing by Transmission Holographic Gratings in a Bi12TiO20 Crystal of the (110)-Cut. Tech. Phys. 66, 760–767 (2021). https://doi.org/10.1134/S1063784221050169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221050169

Navigation