Skip to main content
Log in

Numerical Study of Shock-Wave Loading of the W- and WC-Based Metal Composites

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Shock-wave loading of metal composites (Elkonites) that represent sintered refractory materials (tungsten, tungsten carbide, or molybdenum) in combinations with low-melting metal (silver or copper) is simulated in numerical experiments. A thermodynamic equilibrium components model is employed. The simulated results are in good agreement with experimental data of several authors. The model describes dynamic loading of solid and porous alloys (Cu–W, Ag–W, Cu–WC, and Ag–WС) and allows selection of compositions of materials with different porosities and relative contents of components aimed at fabrication of solid and porous samples with desired characteristics under shock-wave loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. Yu. Belyakova, Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 1, 99 (1991).

    Google Scholar 

  2. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, “The equation of state of solids from shock wave studies,” in High Velocity Impact Phenomena, Ed. by R. Kinslow (Academic, New York, 1970).

    Google Scholar 

  3. B. A. Lyukshin, A. V. Gerasimov, R. A. Krektuleva, and P. A. Lyukshin, Modeling of Physical and Mechanical Processes in Heterogeneous Structures (Sib. Branch Russ. Acad. Sci., Novosibirsk, 2001) [in Russian].

    Google Scholar 

  4. A. Peikrishvili, L. Kecskes, N. Chikhradze, and A. Dgebuadze, Powder Metall. 46 (2), 127 (2003). https://doi.org/10.1179/003258903225005277

    Article  Google Scholar 

  5. R. A. Krektuleva, Strength Mater. 35, 82 (2003). https://doi.org/10.1023/A:1022929623159

    Article  Google Scholar 

  6. R. F. Trunin, Studies of Extreme States of Condensed Matters by Shock Waves: The Hugoniot Equation (Russ. Fed. Nucl. Center–All-Russ. Sci. Res. Inst. Exp. Phys., Sarov, 2006) [in Russian].

  7. X. F. Zhang, L. Qiao, A. S. Shi, J. Zhang, and Z. W. Guan, J. Appl. Phys. 110, 013506 (2011). https://doi.org/10.1063/1.3603018

    Article  ADS  Google Scholar 

  8. Q. Zhou, P. W. Chen, and X. Gao, AIP Conf. Proc. 1426, 1347 (2012). https://doi.org/10.1063/1.3686530

    Article  ADS  Google Scholar 

  9. R. K. Bel’kheeva, J. Appl. Mech. Tech. Phys. 53, 471 (2012). https://doi.org/10.1134/S0021894412040013

    Article  ADS  Google Scholar 

  10. B. Nayak and S. V. G. Menon, Shock Waves 28, 141 (2018). https://doi.org/10.1007/s00193-017-0717-9

    Article  ADS  Google Scholar 

  11. B. Godibadze, A. Dgebuadze, E. Chagelishvili, G. Mamniashvili, and A. Peikrishvili, J. Phys.: Conf. Ser. 987, 012027 (2018). https://doi.org/10.1088/1742-6596/987/1/012027

    Article  Google Scholar 

  12. A. A. Bakanova, V. A. Bugaeva, I. P. Dudoladov, and Yu. N. Sutulov, Prikl. Mekh. Tekh. Fiz., No. 6, 167 (1972).

  13. Yu. F. Alekseev, L. V. Al’tshuler, and V. P. Krupnikova, Prikl. Mekh. Tekh. Fiz., No. 4, 152 (1971).

  14. S. L. Gavrilyuk and R. Rankine, J. Fluid Mech. 575, 495 (2007). https://doi.org/10.1017/S0022112006004496

    Article  ADS  MathSciNet  Google Scholar 

  15. V. F. Kuropatenko, Models of Continuum Mechanics (Chelyabinsk State Univ., Chelyabinsk, 2007) [in Russian].

    Google Scholar 

  16. V. F. Kuropatenko, “Laws of conservation in models of multispecies media,” in Proc. Conf. Fundamental and Applied Problems of Modern Mechanics, Tomsk, Russia, April 12–14, 2011 (Tomsk State Univ., Tomsk, 2012), pp. 38–41.

  17. S. A. Kinelovskii and K. K. Maevskii, High Temp. 54 (5), 675 (2016). https://doi.org/10.1134/S0018151X16050163

    Article  Google Scholar 

  18. S. A. Kinelovskii and K. K. Maevskii, Tech. Phys. 61 (8), 1244 (2016). https://doi.org/10.1134/S1063784216080144

    Article  Google Scholar 

  19. K. K. Maevskii, J. Phys.: Conf. Ser. 894, 012057 (2017). https://doi.org/10.1088/1742-6596/894/1/012057

    Article  Google Scholar 

  20. K. K. Maevskii, AIP Conf. Proc. 2051, 020181 (2018). https://doi.org/10.1063/1.5083424

    Article  Google Scholar 

  21. K. K. Maevskii, Math. Montisnigri 45, 52 (2019). https://doi.org/10.20948/mathmontis-2019-45-4

    Article  MathSciNet  Google Scholar 

  22. V. V. Milyavskii, V. E. Fortov, A. A. Frolova, K. V. Khishchenko, A. A. Charakhch’yan, and L. V. Shurshalov, Comput. Math. Math. Phys. 46, 873 (2006). https://doi.org/10.1134/S0965542506050113

    Article  MathSciNet  Google Scholar 

  23. LASL Shock Hugoniot Data, Ed. by S. P. Marsh (Univ. California, Berkeley, 1980).

    Google Scholar 

  24. P. R. Levashov, K. V. Khishchenko, I. V. Lomonosov, and V. E. Fortov, AIP Conf. Proc. 706, 87 (2004). http://www.ihed.ras.ru/rusbank/

  25. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock Wave Compression and Adiabatic Expansion of Condensed Matter (Russ. Fed. Nucl. Center–All-Russ. Sci. Res. Inst. Exp. Phys., Sarov, 2006) [in Russian].

  26. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E.Z. Meilikhov (CRC Press, Boca Raton, 1996).

    Google Scholar 

  27. G. V. Belov, V. S. Iorish, and V. S. Yungman, Calphad 23 (2), 173 (1999). https://doi.org/10.1016/S0364-5916(99)00023-1

    Article  Google Scholar 

  28. M. N. Pavlovskii, Fiz. Tverd. Tela 12 (7), 2175 (1970).

    Google Scholar 

  29. M. M. Pacheco, R. H. B. Bouma, and L. Katgerman, Appl. Phys. A 90, 159 (2008). https://doi.org/10.1007/s00339-007-4245-9

    Article  ADS  Google Scholar 

  30. N. Ray, B. Kempf, T. Mützel, L. Froyen, K. Vanmeensel, and J. Vleugels, Mater. Des. 85, 412 (2015). https://doi.org/10.1016/j.matdes.2015.07.006

    Article  Google Scholar 

  31. J. M. Walsh, M. H. Rice, R. G. Mcqueen, and F. L. Yarger, Phys. Rev. 108, 196 (1957).

    Article  ADS  Google Scholar 

  32. R. G. McQueen and S. P. Marsh, J. Appl. Phys. 31, 1253 (1960).

    Article  ADS  Google Scholar 

  33. L. V. Al’tshuler, K. K. Krupnikov, and M. I. Brazhnik, Zh. Eksp. Teor. Fiz. 34 (4), 886 (1958).

    Google Scholar 

  34. A. V. Ostrik, Konstr. Kompoz. Mater., No. 2, 48 (2018).

  35. K.K. Maevskii and S. A. Kinelovskii, Tech. Phys. 64 (8), 1090 (2019). https://doi.org/10.1134/S1063784219080127

    Article  Google Scholar 

  36. K. K. Maevskii, J. Phys.: Conf. Ser. 1385, 012001 (2019). https://doi.org/10.1088/1742-6596/1385/1/012001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Maevskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maevskii, K.K. Numerical Study of Shock-Wave Loading of the W- and WC-Based Metal Composites. Tech. Phys. 66, 749–754 (2021). https://doi.org/10.1134/S1063784221050145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221050145

Navigation