Skip to main content
Log in

Supersonic Laminar Flow Past a Blunt Fin: Duality of the Numerical Solution

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of a numerical solution of the problem of supersonic flow past a blunt fin mounted on a plate with a developing boundary layer are presented. Generally, the case considered corresponds to the flow configuration used in the experimental and computational study by Tutty et al. (2013), in which the laminar air flow with the freestream Mach number of  6.7 is considered. The simulation was performed for different values of Reynolds number ranging from 5.0 × 103 to 2.0 × 104. Two stable solutions corresponding to metastable flow states with different configurations of the vortex structure were predicted within some range of Reynolds number. The bifurcation diagrams showing the main horseshoe vortex center location and the length of separation region versus the Reynolds number is presented, critical Reynolds number corresponding to occurrence of the second isolated solution is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. D. M. Voitenko, A. I. Zubkov, and Yu. A. Panov, Izv. Akad. Nauk SSSR, Mekh. Zhid. Gas., No. 1, 121 (1966).

  2. V. S. Aduevskii and K. I. Medvedev, Izv. Akad. Nauk SSSR, Mekh. Zhid. Gas., No. 1, 25 (1967).

  3. B. Lakshmanan and S. N. Tiwari, J. Aircr. 31 (1), 64 (1994).

    Article  Google Scholar 

  4. O. R. Tutty, G. T. Roberts, and P. H. Schuricht, J. Fluid Mech. 737, 19 (2013).

    Article  ADS  Google Scholar 

  5. Y. Q. Zhuang and X. Y. Lu, Procedia Eng. 126, 134 (2015).

    Article  ADS  Google Scholar 

  6. M. Mortazavi and D. Knight, “Shock wave laminar boundary layer interaction at a hypersonic flow over a blunt fin-plate junction,” in Proc. 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, January 9–13, 2017, AIAA 2017-0536. https://doi.org/10.2514/6.2017-0536

  7. M. Mortazavi and D. Knight, AIAA J. 57 (8), 3506 (2019).

    Article  ADS  Google Scholar 

  8. S. A. Lindörfer, C. S. Combs, P. A. Kreth, R. B. Bond, and J. D. Schmisseur, Shock Waves 30 (4), 395 (2020).

    Article  ADS  Google Scholar 

  9. V. Borovoy, V. Mosharov, V. Radchenko, and A. Skuratov, “The shock-waves interference in the flow around a cylinder mounted on a blunted plate,” in Proc. 7th Eur. Conf. for Aeronautics and Aerospace Sciences, Milan, Italy, July 3–6, 2017. https://doi.org/10.13009/EUCASS2017-63

  10. N. T. Clemens and V. Narayanaswamy, Annu. Rev. Fluid Mech. 46 (1), 469 (2014).

    Article  ADS  Google Scholar 

  11. C. S. Combs, E. L. Lash, P. A. Kreth, and J. D. Schmisseur, AIAA J. 56 (4), 1588 (2018).

    Article  ADS  Google Scholar 

  12. E. V. Kolesnik, E. M. Smirnov, and A. A. Smirnovsky, Nauchno-Tekh. Vedom. St. Petersburg. Gos. Politekh. Univ., Fiz.-Mat. Nauki 12 (2), 7 (2019). https://doi.org/10.18721/JPM.12201

  13. E. V. Kolesnik and A. A. Smirnovsky, J. Phys.: Conf. Ser. 1400, 077030 (2019).

    Google Scholar 

  14. E. V. Kolesnik and E. M. Smirnov, Tech. Phys. 65 (2), 174 (2020). https://doi.org/10.1134/S1063784220020115

    Article  Google Scholar 

  15. E. V. Kolesnik, A. A. Smirnovsky, and E. M. Smirnov, Tech. Phys. Lett. 46, 579 (2020). https://doi.org/10.1134/S1063785020060206

    Article  ADS  Google Scholar 

  16. R. H. Korkegi, AIAA J. 9 (5), 771 (1971).

    Article  ADS  Google Scholar 

  17. A. I. Guzhavin and Ya. P. Korobov, Izv. Akad. Nauk SSSR, Mekh. Zhid. Gas., No. 2, 116 (1984).

  18. I. V. Kolin, V. G. Markov, T. I. Trifonova, and D. V. Shukhovtsov, Tech. Phys. 49 (2), 263 (2004). https://doi.org/10.1134/1.1648967

    Article  Google Scholar 

  19. A. N. Kudryavtsev and D. B Epstein, Izv. Akad. Nauk SSSR, Mekh. Zhid. Gas., No. 3, 122 (2012).

  20. S. V.Guvernyuk, A. F. Zubkov, M. M. Simonenko, and A. I. Shvets, Izv. Akad. Nauk SSSR, Mekh. Zhid. Gas., No. 4, 136 (2014).

  21. Y.-Ch. Hu, W.-F. Zhou, G. Wang, Y.-G. Yang, and Zh.-G. Tang, Phys. Fluids 32 (11), 113601 (2020).

    Article  ADS  Google Scholar 

  22. M. S. Liou and C. J. Steffen, J. Comput. Phys. 107 (1), 23 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Le Touze, A. Murrone, and H. Guillard, J. Comput. Phys. 284, 389 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  24. P. A. Bakhvalov and T. K. Kozubskaya, Math. Models Comput. Simul. 8, 625 (2016). https://doi.org/10.1134/S2070048216060053

    Article  MathSciNet  Google Scholar 

  25. A. Harten, J. Comput. Phys. 49 (3), 357 (1983).

    Article  ADS  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The calculations were performed using resources of the supercomputer center at Peter the Great St. Petersburg Polytechnic University (http://www.scc.spbstu.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kolesnik.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnik, E.V., Smirnov, E.M. Supersonic Laminar Flow Past a Blunt Fin: Duality of the Numerical Solution. Tech. Phys. 66, 741–748 (2021). https://doi.org/10.1134/S1063784221050133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221050133

Navigation