Skip to main content
Log in

On an Experimental Setup for the Determination of the Penetration Capability of the Tail Sections of Shaped-Charge Jets

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

According to the calculation data, the penetrating action of shaped charges can be substantially increased (by 40–50% in the case of a target made of high-strength steel) if the lower velocity threshold, at which the termination of the penetration of the tail sections of a shaped-charge jet into the target occurs, is decreased by increasing the accuracy of their fabrication. To experimentally confirm these data, it is proposed to study in detail the penetration capability of the tail sections of shaped-charge jets with the use of cut-off rods made of a material with a high density which are positioned at a short distance from the shaped charge (of less than its diameter) and are intended for eliminating the higher-velocity portion of the jet. The possible parameters of the cut-off rods for obtaining isolated “tails” of shaped-charge jets with different velocities of the leading element are predicted based on the numerical modeling within a two-dimensional axially symmetrical problem of continuum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. A. Lavrent’ev, Usp. Mat. Nauk 12 (4), 41 (1957).

    Google Scholar 

  2. Explosion Physics, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2004), Vol. 2 [in Russian].

    Google Scholar 

  3. W. P. Walters and J. A. Zukas, Fundamentals of Shaped Charges (Wiley, New York, 1989).

    Google Scholar 

  4. P. C. Chou and W. J. Flis, Propellants, Explos., Pyrotech. 11 (4), 99 (1986).

    Article  Google Scholar 

  5. H. Shekhar, Cent. Eur. J. Energ. Mater. 9 (2), 155 (2012).

    Google Scholar 

  6. W. P. Walters and R. L. Summers, Propellants, Explos., Pyrotech. 18 (5), 241 (1993).

    Article  Google Scholar 

  7. E. Hennequin, Propellants, Explos., Pyrotech. 21 (4), 181 (1996).

    Article  Google Scholar 

  8. J. Petit, J. Appl. Phys. 98 (12), 123521 (2005).

    Article  ADS  Google Scholar 

  9. O. Ayisit, Int. J. Impact Eng. 35 (12), 1399 (2008).

    Article  Google Scholar 

  10. E. Hirsch, Propellants, Explos., Pyrotech. 6 (4), 104 (1981).

    Article  Google Scholar 

  11. O. V. Svirskii, M. A. Vlasova, T. A. Toropova, A. I. Nechaev, and V. A. Krutyakov, Proc. Int. Conf. 5th Khariton Topical Scientific Readings, Sarov, Russia, March 17–21, 2003 (VNIIEF, Sarov, 2003), p. 473.

  12. R. Cornish, J. T. Mills, J. P. Curtis, and D. Finch, Int. J. Impact Eng. 26 (1–10), 105 (2001).

  13. Q.-Q. Xiao, Z.-X. Huang, X.-D. Zu, and X. Jia, Propellants, Explos., Pyrotech. 41 (1), 76 (2016).

    Article  Google Scholar 

  14. M. Moyses, Proc. 17th Int. Symp. on Ballislics, Midrand, South Africa, 1998, Vol. 2, p. 413.

  15. M. Held, Propellants, Explos., Pyrotech. 13 (4), 113 (1988).

    Google Scholar 

  16. D. Boeka, S. Hancock, and N. Ouye, Proc. 19th Int. Symp. on Ballislics, Interlaken, Switzerland, 2001, Vol. 3, p. 1471.

  17. S. L. Hancock, Int. J. Impact Eng. 26 (1–10), 289 (2001).

  18. O. V. Svirsky and M. A. Vlasova, Combust., Explos. Shock Waves 55 (6), 739 (2019). https://doi.org/10.1134/S0010508219060169

    Article  Google Scholar 

  19. Portionicular Questions of Terminal Ballistics, Ed. by V. A. Grigoryan (Bauman Moscow State Tech. Univ., Moscow, 2006) [in Russian].

    Google Scholar 

  20. L. P. Orlenko, Behavior of Materials under Intense Dynamic Loads (Mashinostroenie, Moscow, 1964) [in Russian].

    Google Scholar 

  21. Methods for Studying the Properties of Materials under Intense Dynamic Loads, Ed. by M. V. Zhernokletov (VNIIEF, Sarov, 2005) [in Russian].

    Google Scholar 

  22. P. C. Chou, M. Grudza, Y. F. Liu, and Z. Ritman, Proc. 13th Int. Symp. on Ballislics, Stockholm, Sweden, 1992, Vol. 2, p. WM/489.

  23. P. Y. Chantaret, Proc. 17th Int. Symp. on Ballislics, Midrand, South Africa, 1998, Vol. 2, p. 373.

  24. O. V. Svirsky, M. A. Vlasova, M. I. Korotkov, V. A. Krutyakov, and T. A. Toropova, Int. J. Impact Eng. 29 (1–10), 683 (2003).

  25. M. Mayseless, E. Hirsch, A. Lindenfeld, and Y. Me-Bar, Proc. 17th Int. Symp. on Ballislics, Midrand, South Africa, 1998, Vol. 2, p. 187.

  26. S. V. Fedorov and V. A. Veldanov, Tech. Phys. 51 (7), 952 (2006). https://doi.org/10.1134/S1063784206070255

    Article  Google Scholar 

  27. S. V. Fedorov, Tech. Phys. 52 (10), 1379 (2007). https://doi.org/10.1134/S1063784207100234

    Article  Google Scholar 

  28. S.V. Fedorov and V.A. Veldanov, Tech. Phys. 58 (2), 165 (2013). https://doi.org/10.1134/S1063784213020072

    Article  Google Scholar 

  29. S.V. Fedorov, Vestn. MGTU N. E. Baumana, Ser. Estestv. Nauki, No. 3 (72), 71 (2017). https://doi.org/10.18698/1812-3368-2017-3-71-92

    Article  Google Scholar 

  30. A. V. Babkin, V. I. Kolpakov, V. N. Okhitin, and V. V. Selivanov, Applied Continuum Mechanics, Vol. 3: Numerical Methods in Problems of Physics of Fast-Flowing Processes (Bauman Moscow State Tech. Univ., Moscow, 2006) [in Russian].

  31. S. V. Fedorov, Combust., Explos. Shock Waves 52 (5), 600 (2016). https://doi.org/10.1134/S0010508216050117

    Article  Google Scholar 

  32. G. B. Chernyak and K. B. Povarova, Tungsten in Munitions, Ed. by I. N. Torgunov (Centr. Sci. Res. Inst. Chem. Mech., Moscow, 2014) [in Russian].

    Google Scholar 

  33. S. V. Fedorov and Ya. M. Bayanova, Proc. 25th Int. Symp. on Ballislics, Beijing, China, 2010, p. 1032.

  34. S. V. Fedorov, A. V. Babkin, V. A. Veldanov, N. A. Gladkov, and S. V. Ladov, Vestn. MGTU N.  E.  Baumana, Ser. Estestv. Nauki, No. 5 (68), 18 (2016). https://doi.org/10.18698/1812-3368-2016-5-18-32

    Article  Google Scholar 

  35. J. P. Curtis, M. Moyses, A. J. Arlow, and K. G. Kowan, Proc. 16th Int. Symp. on Ballislics, San Francisco, USA, 1996, Vol. 2, p. WM/369.

Download references

ACKNOWLEDGMENTS

The author is grateful to O.V. Svirsky for useful discussion of the problems considered in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Fedorov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, S.V. On an Experimental Setup for the Determination of the Penetration Capability of the Tail Sections of Shaped-Charge Jets. Tech. Phys. 66, 724–733 (2021). https://doi.org/10.1134/S1063784221050108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221050108

Navigation