Skip to main content
Log in

Magnetic Flux Jumps upon Magnetization of Superconducting Niobium Plate with the Magnetic Field Oriented Normally and Parallel to the Surface

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The dependence of magnetization M on magnetic field H was measured for a thin superconducting niobium plate with strong magnetic flux pinning with the field oriented normally and parallel to the sample plane. At T < Tc, dependences M(H) show a hysteretic behavior with a peak effect in large fields; the shape of the hysteresis loop depends on the field orientation. At temperatures below ~Tc/2 magnetic field jumps appear on dependences M(H), and their behavior also depends on the field orientation. When a good conductor is in the in a good thermal contact with the planar superconducting sample, the flux jumps are noticeably reduced in the perpendicular field orientation, while the flux jumps in the parallel orientation remain unchanged. The decrease in the magnitude of the flux jumps with a transverse orientation of the magnetic field occurs due to the electrodynamic braking of magnetic instability, which could lead to a magnetic flux jump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. P. Huebener, Magnetic Flux Structures in Superconductors, 2nd ed. (Springer, Berlin, 2001).

  2. C. P. Bean and J. D. Livingston, Phys. Rev. Lett. 12 (1), 14 (1964). https://doi.org/10.1103/PhysRevLett.12.14

    Article  ADS  Google Scholar 

  3. V. A. Al’tov, V. B. Zenkevich, M. G. Kremlev, and V. V. Sychev, Stabilization of Superconducting Magnetic Systems (Plenum, New York, 1977).

    Book  Google Scholar 

  4. V. E. Keilin, I. A. Kovalev, S. L. Kruglov, D. I. Shutova, and V. I. Scherbakov, Tech. Phys. 55 (2), 312 (2010). https://doi.org/10.1134/S106378421002026X

    Article  Google Scholar 

  5. F. Colauto, E. Choi, J. Y. Lee, S. I. Lee, E. J. Patiño, M. G. Blamire, T. H. Johansen, and W. A. Ortiz, Appl. Phys. Lett. 96, 092512 (2010). https://doi.org/10.1063/1.3350681

    Article  ADS  Google Scholar 

  6. V. Selvamanickam, Y. Xie, J. Reeves, Y. Chen, X. Xiong, X. Zhang, Y. Qiao, Rar, A. K. Lenseth, R. Schmidt, M. Martchevskii, D. Hazelton, and J. Herrin, “Progress in scale-up of 2G conductor at SuperPower,” in Superconductivity for Electric Systems – Annual DOE Peer Review” (Arlington, VA, August 7–9, 2007). http://www.superpower-inc.com/files/pdf/2007PeerRev2G.pdf.

  7. N. A. Taylanov, arXiv:1111.1416v1 [cond-mat.supr-con] (2011). https://arxiv.org/abs/1111.1416

  8. J. Y. Lee, E.-M. Choi, H.-S. Lee, M.-H. Cho, A. A. F. Olsen, T. H. Johansen, Y. S. Oh, K. H. Kim, Y.-H. Han, T. H. Sung, and S.-I. Lee, J. Phys. Soc. Jpn. 77, 104717 (2008). https://doi.org/10.1143/JPSJ.77.104717

    Article  ADS  Google Scholar 

  9. M. R. Wertheimer and J. le G. Gilchrist, J. Phys. Chem. Solids 28 (12), 2509 (1967). https://doi.org/10.1016/0022-3697(67)90038-8

    Article  ADS  Google Scholar 

  10. C. A. Durán, P. L. Gammel, R. E. Miller, and D. J. Bishop, Phys. Rev. B 52, 75 (1995). https://doi.org/10.1103/physrevb.52.75

    Article  ADS  Google Scholar 

  11. P. Leiderer, J. Boneberg, P. Brüll, V. Bujok, and S. Herminghaus, Phys. Rev. Lett. 71, 2646 (1993). https://doi.org/10.1103/PhysRevLett.71.2646

    Article  ADS  Google Scholar 

  12. U. Bolz, J. Eisenmenger, J. Schiessling, B. U. Runge, and P. Leiderer, Physica B 284, 757 (2000). https://doi.org/10.1016/S0921-4526(99)02060-8

    Article  ADS  Google Scholar 

  13. T. H. Johansen, M. Baziljevich, D. V. Shantsev, P. E. Goa, Y. M. Galperin, W. N. Kang, H. J. Kim, E. M. Choi, M.-S. Kim, and S. I. Lee, Europhys. Lett. 59, 4 (2002). https://doi.org/10.1209/epl/i2002-00146-1

    Article  Google Scholar 

  14. I. A. Rudnev, S. V. Antonenko, D. V. Shantsev, T. H. Johansen, and A. E. Primenko, Cryogenics 43, 12 (2003). https://doi.org/10.1016/S0011-2275(03)00157-7

    Article  Google Scholar 

  15. I. A. Rudnev, S. V. Antonenko, D. V. Shantsev, T. H. Johansen, and A. E. Primenko, Magneto-Optical Imaging. NATO Science Series (Series II: Mathematics, Physics and Chemistry) (Springer, Dordrecht, 2004), Vol. 142, p. 229. https://doi.org/10.1007/978-94-007-1007-8_29

  16. I. A. Rudnev, D. V. Shantsev, T. H. Johansen, and A. E. Primenko, Appl. Phys. Lett. 87, 042502 (2005). https://doi.org/10.1063/1.1992673

    Article  ADS  Google Scholar 

  17. D. V. Shantsev, P. E. Goa, F. L. Barkov, T. H. Johansen, W. N. Kang, and S. I. Lee, Supercond. Sci. Technol. 16, 5 (2003). https://doi.org/10.1088/0953-2048/16/5/304

    Article  Google Scholar 

  18. I. A. Golovchanskiy, A. V. Pan, T. H. Johansen, J. George, I. A. Rudnev, A. Rosenfeld, and S. A. Fedoseev, Phys. Rev. B 97, 014524 (2018). https://doi.org/10.1103/PhysRevB.97.014524

    Article  ADS  Google Scholar 

  19. S. Vasiliev, V. V. Chabanenko, A. Nabialek, V. Rusakov, S. Piechota, and H. Szymczak, Acta Phys. Pol., A 106 (5), 777 (2004). https://doi.org/10.12693/APhysPolA.106.777

    Article  ADS  Google Scholar 

  20. M. S. Welling, R. J. Westerwaal, W. Lohstroh, and R. J. Wijngaarden, Physica C 411, 11 (2004). https://doi.org/10.1016/j.physc.2004.06.011

    Article  ADS  Google Scholar 

  21. R. Prozorov, D. V. Shantsev, and R. G. Mints, Phys. Rev. B 74, 220511(R) (2006). https://doi.org/10.1103/PhysRevB.74.220511

  22. H. Ikuta, K. Kishio, and K. Kitazawa, J. Appl. Phys. 76, 4776 (1994). https://doi.org/10.1063/1.357249

    Article  ADS  Google Scholar 

  23. V. V. Chabanenko, A. I. D’yachenko, M. V. Zalutskii, V. F. Rusakov, H. Szymczak, S. Piechota, and A. Nabialek, J. Appl. Phys. 88, 5875 (2000). https://doi.org/10.1063/1.1314611

    Article  ADS  Google Scholar 

  24. M. P. Volkov and S. I. Tsypkin, Pis’ma Zh. Tekn. Fiz. 9 (2), 117 (1983).

    Google Scholar 

  25. E. C. S. Duarte, E. Sardella, W. A. Ortiz, and R. Zadorosny, J. Phys.: Condens. Matter 29 (40), 405605 (2017). https://doi.org/10.1088/1361-648X/aa81e6

    Article  Google Scholar 

  26. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964). https://doi.org/10.1103/RevModPhys.36.31

    Article  ADS  Google Scholar 

  27. D. K. Finnemore, T. F. Stromberg, and C. A. Swenson, Phys. Rev. 149, 231 (1966). https://doi.org/10.1103/PhysRev.149.231

    Article  ADS  Google Scholar 

  28. L. Burlachkov, Y. Yeshurun, M. Konczykowski, and F. Holtzberg, Phys. Rev. B 45, 8193 (1992). https://doi.org/10.1103/PhysRevB.45.8193

    Article  ADS  Google Scholar 

  29. M. Konczykowski, L. I. Burlachkov, Y. Yeshurun, and F. Holtzberg, Phys. Rev. B 43, 13707 (1991). https://doi.org/10.1103/PhysRevB.43.13707

    Article  ADS  Google Scholar 

  30. D. V. Denisov, A. L. Rakhmanov, D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Phys. Rev. B 73, 014512 (2006). https://doi.org/10.1103/PhysRevB.73.014512

    Article  ADS  Google Scholar 

  31. D. V.  Denisov,  D. V.  Shantsev,  Y. M.  Galperin, E.-M. Choi, H.-S. Lee, S.-I. Lee, A. V. Bobyl, P. E. Goa, A. A. F. Olsen, and T. H. Johansen, Phys. Rev. Lett. 97, 077002 (2006). https://doi.org/10.1103/PhysRevLett.97.077002

    Article  ADS  Google Scholar 

  32. Y. Tsuchiya, Y. Nakajima, T. Tamegai, S. Nagasawa, and M. Hidaka, Phys. Procedia 45, 121 (2013). https://doi.org/10.1016/j.phpro.2013.04.067

    Article  ADS  Google Scholar 

  33. J. I. Vestgården, T. H. Johansen, and Y. M. Galperin, Low Temp. Phys. 44, 460 (2018). https://doi.org/10.1063/1.5037549

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Chikurov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Efimov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikurov, D.S., Volkov, M.P. Magnetic Flux Jumps upon Magnetization of Superconducting Niobium Plate with the Magnetic Field Oriented Normally and Parallel to the Surface. Tech. Phys. 66, 1311–1318 (2021). https://doi.org/10.1134/S1063784221050091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221050091

Navigation