Skip to main content
Log in

Comparison of Lithium Divertor Options for the DEMO-FNS Tokamak

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The choice of an idea for a divertor with evaporating liquid lithium that meets the requirements for removing the thermal load from the edge plasma and provides an acceptable level of change in the ionic composition of the main plasma for the DEMO-FNS tokamak being developed in Russia has been discussed. The results of numerical simulation and optimization of the design of divertors with multiple volumes sectioned by slotted diaphragms have been presented. The parameters of lithium streams flowing into the edge layer have been estimated for the temperature range of divertor chambers from 500 to 1000 K under the conditions of the gas-kinetic and free-molecular modes of lithium vapor outflow from the divertor. Analysis of the processes that reduce the outflux of lithium from the chambers and its penetration into the main volume of the plasma inside the separatrix showed that sectioning effectively reduces the outflow streams to acceptable levels of ≈1020 atom/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Loarte, B. Lipschultz, A. S. Kukushkin, G. F. Matthews, P. C. Stangeby, N. Asakura, G. F. Counsell, G. Federici, A. Kallenbach, K. Krieger, A. Mahdavi, V. Philipps, D. Reiter, J. Roth, J. Strachan, et al., Nucl. Fusion 47 (6), S203 (2007). https://doi.org/10.1088/0029-5515/47/6/S04

    Article  Google Scholar 

  2. B. V. Kuteev, P. R. Goncharov, V. Yu. Sergeev, and V. I. Khripunov, Plasma Phys. Rep. 36, 281 (2010). https://doi.org/10.1134/S1063780X1004001X

    Article  ADS  Google Scholar 

  3. B. V. Kuteev, E. A. Azizov, A. S. Bykov, A. Yu. Dnestrovsky, V. N. Dokuka, G. G. Gladush, A. A. Golikov, P. R. Goncharov, M. Gryaznevich, M. I. Gurevich, A. A. Ivanov, R. R. Khairutdinov, V. I. Khripunov, D. Kingham, A. V. Klishchenko, et al., Nucl. Fusion 51, 073013 (2011). https://doi.org/10.1088/0029-5515/51/7/073013

    Article  ADS  Google Scholar 

  4. T. Eich, B. Sieglin, A. Scarabosio, W. Fundamenski, R. J. Goldston, and A. Herrmann, Phys. Rev. Lett. 107, 215001 (2011). https://doi.org/10.1103/PhysRevLett.107.215001

    Article  ADS  Google Scholar 

  5. R. J. Goldston, R. Myers, and J. Schwartz, Phys. Scr. 167, 014017 (2016). https://doi.org/10.1088/0031-8949/T167/1/014017

    Article  Google Scholar 

  6. A. Herrmann, Plasma Phys. Controlled Fusion 44, 883 (2002). https://doi.org/10.1088/0741-3335/44/6/318

    Article  ADS  Google Scholar 

  7. A. W. Leonard, Plasma Phys. Controlled Fusion 60, 044001 (2018). https://doi.org/10.1088/1361-6587/aaa7a9

    Article  ADS  Google Scholar 

  8. P. M. Valanju, M. Kotschenreuther, S. M. Mahajan, and J. Canik, Phys. Plasmas 16, 056110 (2009). https://doi.org/10.1063/1.3110984

    Article  ADS  Google Scholar 

  9. D. D. Ryutov, Phys. Plasmas 14, 064502 (2007). https://doi.org/10.1063/1.2738399

    Article  ADS  Google Scholar 

  10. S. V. Mirnov, Plasma Phys. Controlled Fusion 55, 045003 (2013). https://doi.org/10.1088/0741-3335/55/4/045003

    Article  ADS  Google Scholar 

  11. G. Mazzitelli et al., Proc. 44th EPS Conf. Plasma Phys., June 26–30, 2017, Belfast, p. O5.132.

  12. S. I. Krasheninnikov, L. E. Zakharov, and G. V. Pereverzev, Phys. Plasmas 10, 1678 (2003). https://doi.org/10.1063/1.1558293

    Article  ADS  Google Scholar 

  13. A. Vertkov, I. Luyblinski, V. Evtikhin, G. Mazzitelli, M. L. Apicella, V. Lazarev, A. Alekseyev, and S. Khomyakov, Fusion Eng. Des. 82, 1627 (2007). https://doi.org/10.1016/j.fusengdes.2007.05.009

    Article  Google Scholar 

  14. M. A. Jaworski, T. Abrams, J. P. Allain, M. G. Bell, R.  E. Bell, A. Diallo, T. K. Gray, S. P. Gerhardt, R.  Kaita, H. W. Kugel, B. P. LeBlanc, R. Maingi, A. G. McLean, J. Menard, R. Nygren, et al., Nucl. Fusion 53 (8), 083032 (2013). https://doi.org/10.1088/0029-5515/53/8/083032

    Article  ADS  Google Scholar 

  15. Y. Nagayama, Fusion Eng. Des. 84, 1380 (2009). https://doi.org/10.1016/j.fusengdes.2009.02.002

    Article  Google Scholar 

  16. R. J. Goldston, A. Hakim, G. W. Hammett, M. A. Jaworski, and J. Schwartz, Nucl. Mater. Energy 12, 1118 (2017). https://doi.org/10.1016/j.nme.2017.03.020

    Article  Google Scholar 

  17. B. V. Kuteev, Yu. S. Shpanskiy, and DEMO-FNS Team, Nucl. Fusion 57, 076039 (2017). https://doi.org/10.1088/1741-4326/aa6dcb

    Article  ADS  Google Scholar 

  18. Yu. S. Shpanskiy and DEMO-FNS Project Team, Nucl. Fusion 59, 076014 (2019). https://doi.org/10.1088/1741-4326/ab14a8

    Article  ADS  Google Scholar 

  19. A. Y. Dnestrovskiy, A. S. Kukushkin, B. V. Kuteev, and V. Y. Sergeev, Nucl. Fusion 59, 096053 (2019). https://doi.org/10.1088/1741-4326/ab3075

    Article  ADS  Google Scholar 

  20. A. S. Kukushkin, V. Yu. Sergeev, and B. V. Kuteev, J. Phys.: Conf. Ser. 907, 012012 (2017). https://doi.org/10.1088/1742-6596/907/1/012012

    Article  Google Scholar 

  21. V. Yu. Sergeev, B. V. Kuteev, A. S. Bykov, A. A. Gervash, D. A. Glazunov, P. R. Goncharov, A. Yu. Dnestrovskij, R. R. Khayrutdinov, A. V. Klishchenko, V. E. Lukash, I. V. Mazul, P. A. Molchanov, V. S. Petrov, V. A. Rozhansky, Yu. S. Shpanskiy, et al., Nucl. Fusion 55, 123013 (2015). https://doi.org/10.1088/0029-5515/55/12/123013

    Article  ADS  Google Scholar 

  22. Y. A. Çengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications (McGraw-Hill, New York, 2006).

    Google Scholar 

  23. E. D. Emdee, R. J. Goldston, J. A. Schwartz, M. E. Rensink, and T. D. Rognlien, Nucl. Mater. Energy 19, 244 (2019). https://doi.org/10.1016/j.nme.2019.01.032

    Article  Google Scholar 

  24. W. H. Chubberly, Metals Handbook (Am. Soc. Metals, 1979), Vol. 2.

    Google Scholar 

  25. K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12 (4), 891 (1983). https://doi.org/10.1063/1.555700

    Article  ADS  Google Scholar 

  26. V. Yu. Sergeev, O. A. Bakhareva, B. V. Kuteev, and M. Tendler, Plasma Phys. Rep. 32, 363 (2006). https://doi.org/10.1134/S1063780X06050023

    Article  ADS  Google Scholar 

  27. R. R. Khayrutdinov and V. E. Lukash, J. Comput. Phys. 109, 193 (1993). https://doi.org/10.1006/jcph.1993.1211

    Article  ADS  Google Scholar 

  28. G. Z. Zuo, J. S. Hu, R. Maingi, J. Ren, Z. Sun, Q. X. Yang, Z. X. Chen, H. Xu, K. Tritz, L. E. Zakharov, C. Gentile, X. C. Meng, M. Huang, W. Xu, Y. Chen, et al., Nucl. Fusion 57, 046017 (2017). https://doi.org/10.1088/1741-4326/aa5ea0

    Article  ADS  Google Scholar 

  29. W. Fundamenski et al., EFDA–JET–CP(08)05/15 (2008).

Download references

Funding

This work was supported by the Ministry of science and higher education of Russian Federation in the framework of the state contract in the field of science under project no. 0784-2020-0020 using the Federal Joint Research Center “Material science and characterization in advanced technology” (project RFMEFI62119X0021), including the unique scientific device “Spherical tokamak Globus-M.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Skokov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skokov, V.G., Sergeev, V.Y., Anufriev, E.A. et al. Comparison of Lithium Divertor Options for the DEMO-FNS Tokamak. Tech. Phys. 66, 664–674 (2021). https://doi.org/10.1134/S1063784221040186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221040186

Navigation