Skip to main content
Log in

Analysis of Mass-Transport Losses in Structure-Modified Electrodes of Air–Hydrogen Fuel Cells by the Current–Voltage Characteristic Method

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have tested platinum–carbon electrodes with mixed conductivity as parts of membrane electrode assemblies of fuel cells containing structure-modifying additives with different structural elements (carbon nanotubes with extended structural elements and graphene-like materials with nearly 2D planes). Mass-transport losses of molecular oxygen transfer in these electrodes have been investigated on the basis of data on the limiting current density obtained in the potentiodynamic and potentiostatic regimes. The pressure dependences of the current density have been plotted using various conditions of measurements. Limiting factors and oxygen transport mechanisms in the tested structures and the role of introduced modifiers have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. Niblett, V. Niasar, and S. Holmes, J. Electrochem. Soc. 167 (1), 013520 (2020). https://doi.org/10.1149/2.0202001JES

    Article  ADS  Google Scholar 

  2. Sh. Shi, X. Guo, B. Chen, and Z. Sun, J. Eng. Fibers Fabr. 14, 1 (2019). https://doi.org/10.1177/1558925019896438

    Article  Google Scholar 

  3. S. Kattamanchi, K. Palakurthi, and P. Haridoss, Energy Technol. 8, 2000119 (2020). https://doi.org/10.1002/ente.202000119

    Article  Google Scholar 

  4. B. Chi, Y. K. Ye, X. Y. Lu, S. J. Jiang, L. Du, J. H. Zeng, J. W. Ren, and S. J. Liao, J. Power Sources 443, 227284 (2019). https://doi.org/10.1016/j.jpowsour.2019.227284

    Article  Google Scholar 

  5. Ch. Luo, H. Xie, Q. Wang, G. Luo, and Ch. Liu, Nanostruct. Carbon Mater. 2015, 1 (2015). https://doi.org/10.1155/2015/560392

  6. R. Wlodarczyk, Mater. Sci. Appl. 10, 643 (2019). https://doi.org/10.4236/msa.2019.1010046

    Article  Google Scholar 

  7. A. A. Nechitailov, N. V. Glebova, and A. O. Krasnova, J. Struct. Chem. 60 (9), 1507 (2019). https://doi.org/10.1134/S0022476619090166

    Article  Google Scholar 

  8. https://www.fuelcellstore.com/spec-sheets/vulcan-xc72-spec-sheet.pdf.

  9. N. V. Glebova and A. A. Nechitaylov, Perspekt. Mater. 9, 71 (2010).

    Google Scholar 

  10. M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda, and A. Ohta, J. Electrochem. Soc. 142, 2572 (1995).

    Article  ADS  Google Scholar 

  11. J. McBreen, H. Olender, S. Srinivasan, and K. Kordesch, J. Appl. Electrochem. 11, 787 (1981).

    Article  Google Scholar 

  12. D. Pantea, H. Darmstadt, S. Kaliaguine, L. Summchen, and C. Roy, Carbon 39, 1147 (2001). https://doi.org/10.1016/S0008-6223(00)00239-6

    Article  Google Scholar 

  13. E. Antolini, Appl. Catal., B 88, 1 (2009). https://doi.org/10.1016/j.apcatb.2008.09.030

    Article  Google Scholar 

  14. http://www.nanotc.ru/producrions/87-cnm-taunit.

  15. A. O. Krasnova, N. V. Glebova, and A. A. Nechitailov, Russ. J. Appl. Chem. 89 (6), 916 (2016). https://doi.org/10.1134/S1070427216060112

    Article  Google Scholar 

  16. V. I. Mazin and E. V. Mazin, RF Patent No. 2581382, Byull. Izobret., No. 11 (2016).

  17. N. V. Glebova, A. O. Krasnova, and A. A. Nechitailov, Russ. J. Appl. Chem. 91 (8), 1262 (2018). https://doi.org/10.1134/S1070427218080037

    Article  Google Scholar 

  18. S. Litster and G. McLean, J. Power Sources 130, 61 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.055

    Article  ADS  Google Scholar 

  19. D. A. Andronikov, N. K. Zelenina, E. E. Terukova, and A. A. Tomasov, RF Patent No. 2487442, Byull. Izobret., No. 19 (2013).

  20. http://fuelcell.com/product/fc-05-02/.

  21. F. Beck, M. Dolata, E. Grivei, and N. Probst, J. Appl. Electrochem. 31, 845 (2001).

    Article  Google Scholar 

  22. V. L. Kheifets, D. K. Avdeev, and L. S. Reishakhrit, Workshop on Theoretical Electrochemistry (Leningrad. Univ., Leningrad, 1954), p. 50 [in Russian].

  23. J. Bett, K. Kinoshita, K. Routsis, and P. Stonehart, J. Catal. 29 (1), 160 (1973). https://doi.org/10.1016/0021-9517(73)90214-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Glebova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glebova, N.V., Krasnova, A.O., Nechitailov, A.A. et al. Analysis of Mass-Transport Losses in Structure-Modified Electrodes of Air–Hydrogen Fuel Cells by the Current–Voltage Characteristic Method. Tech. Phys. 66, 588–595 (2021). https://doi.org/10.1134/S1063784221040083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221040083

Navigation