Skip to main content
Log in

Characteristics of Carbon Nanotubes Synthesized from Methane and Acetylene in the Presence of a FeCl3 Catalyst

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The structures of carbon nanotubes synthesized by catalytic CVD in the same reactor using different carbon-containing precursors and a FeCl3 catalyst have been compared. Methane and acetylene were applied as carbon-containing precursors. Iron chloride has been applied on silicon substrates by drying a drop of its water solution on the silicon surface. The influence of temperature and pressure variations on the synthesis process has been studied. Obtained samples have been examined by the methods of scanning electron microscopy and Raman spectroscopy. A nonlinear relationship between synthesis temperature and defect concentration in synthesized carbon nanotubes has been found. The influence of the type of carbon-containing precursor on the carbon nanotube morphology has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, Science 297 (5582), 787 (2002). https://doi.org/10.1126/science.1060928

    Article  ADS  Google Scholar 

  2. M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science 339 (6119), 535 (2013). https://doi.org/10.1126/science.1222453

    Article  ADS  Google Scholar 

  3. Y. Li, ACS Nano 11 (1), 1 (2017). https://doi.org/10.1021/acsnano.7B00232

    Article  Google Scholar 

  4. R. Rao, C. L. Pint, A. E. Islam, R. S. Weatherup, S. Hofmann, E. R. Meshot, F. Wu, C. Zhou, N. Dee, P. B. Amama, J. Carpena-Nuñez, W. Shi, D. L. Plata, E. S. Penev, B. I. Yakobson, et al., ACS Nano 12 (12), 11756 (2018). https://doi.org/10.1021/acsnano.8B06511

    Article  Google Scholar 

  5. V. Jourdain and C. Bichara, Carbon 58, 2 (2013). https://doi.org/10.1016/j.carbon.2013.02.046

    Article  Google Scholar 

  6. J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adamc, and R. Kizek, J. Mater. Chem. 21 (40), 15872 (2011). https://doi.org/10.1039/C1JM12254A

    Article  Google Scholar 

  7. M. Cantoro, S. Hofmann, S. Pisana, V. Scardaci, A. Parvez, C. Ducati, A. C. Ferrari, A. M. Blackburn, K.-Y. Wang, and J. Robertson, Nano Lett. 6 (6), 1107 (2006). https://doi.org/10.1021/nl060068y

    Article  ADS  Google Scholar 

  8. D. N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumura, and S. Iijima, J. Phys. Chem. B 110 (15), 8035 (2006). https://doi.org/10.1021/JP060080E

    Article  Google Scholar 

  9. F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J.-Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, et al., Nature 510 (7506), 522 (2014). https://doi.org/10.1038/nature13434

    Article  ADS  Google Scholar 

  10. X. T. Than, Thèse de doctorat en Phys. (Univ. Montpellier 2, 2011). http://www.theses.fr/2011MON20110.

  11. B. T. Nguyen, X. T. Than, V. C. Nguyen, T. T. Tam Ngo, H. T. Bui, X. N. Nguyen, H. K. Phan, and N. M. Phan, Adv. Nat. Sci.: Nanosci. Nanotechnol. 3 (2), 025010 (2012). https://doi.org/10.1088/2043-6262/3/2/025010

    Article  ADS  Google Scholar 

  12. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus, Adv. Phys. 60 (3), 413 (2011). https://doi.org/10.1080/00018732.2011.582251

    Article  ADS  Google Scholar 

  13. A. C. Ferrari and J. Robertson, Phys. Rev. B 31 (2), 632 (2011). https://doi.org/10.1007/BF02543692

    Article  Google Scholar 

  14. H. Murphy, P. Papakonstantinou, and T. I. T. Okpalugo, J. Vac. Sci. Technol., B 24 (2), 715 (2006). https://doi.org/10.1116/1.2180257

    Article  Google Scholar 

  15. X. Zhao, Y. Ando, L. C. Qin, H. Kataura, Y. Maniwa, and R. Saito, Appl. Phys. Lett. 81 (14), 2550 (2002). https://doi.org/10.1063/1.1502196

    Article  ADS  Google Scholar 

  16. M. M. Lucchese, F. Stavale, E.H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, Carbon 48 (5), 1592 (2010). https://doi.org/10.1016/j.carbon.2009.12.057

    Article  Google Scholar 

  17. P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio, Adv. Mater. 12 (10), 750 (2000).

    Article  Google Scholar 

  18. V. N. Popov, D. I. Levshov, J. L. Sauvajol, and M. Paillet, Phys. Rev. B 97 (16), 1 (2018). https://doi.org/10.1103/PhysRevB.97.165417

    Article  Google Scholar 

  19. H. Shiozawa, T. Pichler, A. Grüneis, R. Pfeiffer, H. Kuzmany, Z. Liu, K. Suenaga, and H. Kataura, Adv. Mater. 20 (8), 1443 (2008). https://doi.org/10.1002/adma.200701466

    Article  Google Scholar 

  20. H. Shiozawa, T. Pichler, C. Kramberger, A. Grüneis, M. Knupfer, B. Büchner, V. Zólyomi, J. Koltai, J. Kürti, D. Batchelor, and H. Kataura, Phys. Rev. B 77 (15), 3 (2008). https://doi.org/10.1103/PhysRevB.77.153402

    Article  Google Scholar 

  21. V. Zólyomi, J. Koltai, Á. Rusznyák, J. Kürti, Á. Gali, F. Simon, H. Kuzmany, Á. Szabados, and P. R. Surján, Phys. Rev. B 77 (24), 1 (2008). https://doi.org/10.1103/PhysRevB.77.245403

    Article  Google Scholar 

  22. H. Farhat, H. Son, G. G. Samsonidze, S. Reich, M. S. Dresselhaus, and J. Kong, Phys. Rev. Lett. 99 (14), 145506 (2007). https://doi.org/10.1103/PhysRevLett.99.145506

    Article  ADS  Google Scholar 

  23. J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, and S. Fan, Nano Lett. 13 (12), 6170 (2013). https://doi.org/10.1021/NL4035048

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. A.I. Levshov, for assistance in discussing Raman spectroscopy data.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-29-19043-mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Avramenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redina, A.G., Avramenko, M.V. & Lyanguzov, N.V. Characteristics of Carbon Nanotubes Synthesized from Methane and Acetylene in the Presence of a FeCl3 Catalyst. Tech. Phys. 66, 445–452 (2021). https://doi.org/10.1134/S106378422103021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422103021X

Navigation