Skip to main content
Log in

Coulomb Explosion of the Debye Layer As a Mechanism for the Formation of a High-Energy Ion Flow in the Plasma of a Micropinch Discharge

  • EXPERIMENTAL INSTRUMENTS AND TECHNIQUE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Flows of ions with energies on the order of megaelectronvolts, which propagate both in the axial direction and in the direction perpendicular to the symmetry axis of the discharge, are recorded in a high-current low inductance vacuum spark. Estimates based on the measurements of the total charge of suprathermal electrons emitted from the region of the waist of the current channel in the axial direction, as well as the total number of ions of the indicated energies show that the recorded ion energies correspond quite well to the value that can be achieved as a result of the Coulomb explosion of the Debye waist layer at the stage preceding the radiation compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. Benford, Appl. Phys. Lett. 33 (10), 983 (1978).

    Article  ADS  Google Scholar 

  2. V. V. Vikhrev and E. O. Baronova, Prikl. Fiz. 5, 71 (1999).

    Google Scholar 

  3. B. A. Trubnikov, S. K. Zhdanov, and V. P. Vlasov, Fiz. Plazmy 17 (10), 1192 (1991).

    ADS  Google Scholar 

  4. A. A. Rukhadze and U. Yusupaliev, Tech. Phys. 49 (7), 933 (2004). https://doi.org/10.1134/1.1778872

    Article  Google Scholar 

  5. V. I. Oreshkin and E. V. Oreshkin, Tech. Phys. 62 (1), 32 (2017). https://doi.org/10.1134/S1063784217010169

    Article  Google Scholar 

  6. V. V. Vikhrev, V. V. Ivanov, and K. N. Koshelev, Sov. J. Plasma Phys. 8, 688 (1982).

    ADS  Google Scholar 

  7. S. I. Blinnikov and V. S. Imshennik, Sov. J. Plasma Phys. 8, 110 (1982).

    Google Scholar 

  8. A. N. Dolgov, N. A. Klyachin, and D. E. Prokhorovich, Tech. Phys. 59 (12), 1881 (2014). https://doi.org/10.1134/S1063784214120044

    Article  Google Scholar 

  9. E. Ya. Goltz, I. A. Zhitnik, E. Ya. Kononov, S. L. Mandel’stam, and Yu. V. Sidelnikov, Sov. Phys.-Dokl. 20, 49 (1975).

    ADS  Google Scholar 

  10. V. A. Veretennikov, S. N. Polukhin, O. G. Semenov, and Yu. V. Sidel’nikov, Sov. J. Plasma Phys. 7, 656 (1981).

    ADS  Google Scholar 

  11. A. N. Dolgov and D. E. Prokhorovich, Prikl. Fiz., No. 3, 52 (2008).

  12. A. N. Dolgov, N. A. Klyachin, and D. E. Prokhorovich, Plasma Phys. Rep. 38 (2), 149 (2012). https://doi.org/10.1134/S1063780X12010035

    Article  ADS  Google Scholar 

  13. J. W. Shearer, Phys. Fluids 19 (9), 1426 (1976).

    Article  ADS  Google Scholar 

  14. J. Bailey, A. Fisher, and N. Rostoker, J. Appl. Phys. 60 (6), 1939 (1986).

    Article  ADS  Google Scholar 

  15. K. N. Koshelev, Yu. V. Sidel’nikov, V. V. Vikhrev, and V. V. Ivanov, Spectroscopy of Multicharged Ions in Hot Plasmas (Nauka, Moscow, 1991), p. 163 [in Russian].

    Google Scholar 

  16. V. I. Oreshkin, Russ. Phys. J. 40 (12), 1185 (1997). https://doi.org/10.1007/BF02524307

    Article  Google Scholar 

  17. L. Bernal and H. Bruzzone, Plasma Phys. Controlled Fusion 44 (2), 223 (2000).

    Article  ADS  Google Scholar 

  18. A. N. Dolgov, Doctoral Dissertation in Mathematics and Physics (Moscow Eng. Phys. Inst., Moscow, 2005).

  19. V. A. Veretennikov, V. A. Gribkov, E. Ya. Kononov, O. G. Semenov, and Yu. V. Sidel’nikov, Sov. J. Plasma Phys. 7, 249 (1981).

    Google Scholar 

  20. V. A. Veretennikov, A. N. Dolgov, O. N. Krokhin, and O. G. Semenov, Fiz. Plazmy 11 (8), 1107 (1985).

    Google Scholar 

  21. A. N. Dolgov, V. K. Lyapidevskii, D. E. Prokhorovich, A. S. Savelov, and G. Kh. Salakhutdinov, Plasma Phys. Rep. 31 (2), 167 (2005). https://doi.org/10.1134/1.1866598

    Article  ADS  Google Scholar 

  22. T. Czyzwski and A. Szydlovski, J. Tech. Phys. 22 (22), 153 (1981).

    Google Scholar 

  23. W. A. Stygar, R. J. Leeper, L. P. Mix, E. R. Brock, J. E. Bailey, D. E. Hebron, D. J. Johnson, T. R. Lockner, J. Maenchen, T. A. Mehlhorn, and P. Reyes, Rev. Sci. Instrum. 59 (8), 1703 (1988).

    Article  ADS  Google Scholar 

  24. G. V. Ivanenkov, S. A. Pikuz, D. B. Sinars, V. Stepnievski, D. A. Hammer, and T. A. Shelkovenko, Plasma Phys. Rep. 26 (10), 868 (2000). https://doi.org/10.1134/1.1316826

    Article  ADS  Google Scholar 

  25. S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, Plasma Phys. Rep. 41 (4), 291 (2015). https://doi.org/10.1134/S1063780X15040054

    Article  ADS  Google Scholar 

  26. V. I. Oreshkin, S. A. Chaikovsky, A. P. Artyomov, N. A. Labetskaya, A. V. Fedunin, A. G. Rousskikh, and A. S. Zhigalin, Phys. Plasmas 21, 102711 (2014).

    Article  ADS  Google Scholar 

  27. V. V. Averkiev, A. N. Dolgov, V. K. Lyapidevskii, A. S. Savelov, and G. Kh. Salakhutdinov, Sov. J. Plasma Phys. 18, 374 (1992).

    Google Scholar 

  28. A. N. Dolgov, N. A. Klyachin, and D. E. Prokhorovich, Plasma Phys. Rep. 42 (12), 1101 (2016). https://doi.org/10.1134/S1063780X16120047

    Article  ADS  Google Scholar 

  29. A. N. Dolgov, N. A. Klyachin, and D. E. Prokhorovich, JETP Lett. 99 (9), 512 (2014). https://doi.org/10.1134/S0021364014090045

    Article  ADS  Google Scholar 

  30. A. N. Dolgov and V. V. Vikhrev, Plasma Phys. Rep. 31 (3), 259 (2005). https://doi.org/10.1134/1.1884692

    Article  ADS  Google Scholar 

  31. S. K. Zhdanov, V. A. Kurnaev, M. K. Romanovskii, and I. V. Tsvetkov, Fundamentals of Physical Processes in Plasma and Plasma Systems, Ed. by V. A. Kurnaev (MIFI, Moscow, 2007) [in Russian].

    Google Scholar 

  32. B. L. Weich, F. C. Young, and H. R. Griem, J. Appl. Phys. 74 (4), 2260 (1993).

    Article  ADS  Google Scholar 

  33. G. S. Sarkisov and B. Etlicher, Pisma Zh. Eksp. Teor. Fiz. 62 (9–10), 775 (1995).

    Google Scholar 

  34. V. A. Veretennikov, A. E. Gurei, T. Pisarchik, S.   N.   Polukhin, A. A. Rupasov, G. S. Sarkisov, O. G. Semenov, and A. S. Shikanov, Sov. J. Plasma Phys. 16, 475 (1990).

    Google Scholar 

  35. A.N. Dolgov, N.V. Zemchenkova, N.A. Klyachin, and D.E. Prokhorovich, Plasma Phys. Rep. 37 (3), 203 (2011). https://doi.org/10.1134/S1063780X11030032

    Article  ADS  Google Scholar 

  36. S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomenskii, S. A. Pikuz, and A. I. Samokhin, Fiz. Plazmy 9 (3), 469 (1983).

    Google Scholar 

  37. B. E. Meierovich, The Channel of a Strong Current (Fima, Moscow, 1999) [in Russian].

    Google Scholar 

  38. R. S. Pease, Proc. Phys. Soc. B 70 (445), 11 (1957).

    Article  ADS  Google Scholar 

  39. S. I. Braginskii, Sov. Phys.-JETP 6, 494 (1958).

    ADS  MathSciNet  Google Scholar 

  40. B. N. Mironov, Fiz. Plazmy 20 (6), 546 (1994).

    Google Scholar 

  41. B. N. Mironov, Fiz. Plazmy 20 (10), 886 (1994).

    Google Scholar 

  42. A.N. Dolgov, N.A. Klyachin, and D.E. Prokhorovich, Plasma Phys. Rep. 40 (9), 733 (2014). https://doi.org/10.1134/S1063780X14080042

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Dolgov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgov, A.N., Klyachin, N.A. & Prokhorovich, D.E. Coulomb Explosion of the Debye Layer As a Mechanism for the Formation of a High-Energy Ion Flow in the Plasma of a Micropinch Discharge. Tech. Phys. 66, 515–523 (2021). https://doi.org/10.1134/S1063784221030051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221030051

Keywords:

Navigation