Skip to main content
Log in

The Influence of Particle Deposition and Coagulation on the Parameters of Nanoaerosols Flowing through a Duct

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The influence of Brownian motion–induced deposition and coagulation of particles on the parameters of nanoaerosols flowing through a duct has been studied. The problem has been considered in the 2D statement with allowance for a nonuniform velocity profile of the medium across the duct. For equal Knudsen numbers, the concentration and radius distributions of clusters resulting from the particle coagulation have been determined in the longitudinal and transverse directions using the numerical finite-difference method. It has been found that, when moving through the duct, clusters reach their limiting size. The influence of key parameters on the distribution of the mixture dispersity characteristics inside the duct and on the cluster’s limiting size has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Townsend, Philos. Trans. R. Soc., A 193, 129 (1900).

  2. P. Gormley and M. Kennedy, Proc. R. Ir. Acad., Sect. A 52, 163 (1949).

  3. N. A. Fuchs, The Mechanics of Aerosols (Dover, New York, 1989).

    Google Scholar 

  4. N. A. Fuks and A. G. Sutugin, Russ. Chem. Rev. 37 (11), 855 (1968). https://doi.org/10.1070/RC1968v037n11ABEH001710

    Article  ADS  Google Scholar 

  5. C. N. Davies, J. Aerosol Sci. 4 (4), 317 (1973).

    Article  ADS  Google Scholar 

  6. E. O. Knutson, Aerosol Sci. Technol. 31 (2–3), 83 (1999).

    Article  ADS  Google Scholar 

  7. Yu. N. Samsonov, Colloid J. 75 (6), 706 (2013).

    Article  Google Scholar 

  8. E. P. Shchukin. N. V. Malay, and Z. L. Shulimanova, Nauchn. Vedom. Belgorod Gos. Univ. Ser. Matem., Fiz., No. 26 (169), 83 (2013).

  9. B. Asgharian, F. J. Miller, O. Price, J. D. Schroeter, D. R. Einstein, R. A. Corley, and T. Bentley, J. Aerosol Sci. 99, 107 (2016). https://doi.org/10.1016/j.jaerosci.2016.01.016

    Article  ADS  Google Scholar 

  10. N. V. Malai and E. R. Shchukin, Tech. Phys. 64 (4), 458 (2019). https://doi.org/10.1134/S1063784219040169

    Article  Google Scholar 

  11. V. I. Anikeev, D. A. Stepanov, and A. Ermakova, Theor. Found. Chem. Eng. 45 (2), 141 (2011). https://doi.org/10.1134/S0040579511020035

    Article  Google Scholar 

  12. P. C. Reist, Introduction to Aerosol Science (Macmillan, New York, 1984).

    Google Scholar 

  13. S. E. Pratsinis and K.-S. Kim, J. Aerosol Sci. 20 (1), 101 (1989).

    Article  ADS  Google Scholar 

  14. F. E. Kruis, K. A. Kusters, S. E. Pratsinis, and B. Scarlett, Aerosol Sci. Technol. 19 (4), 514 (1993). https://doi.org/10.1080/02786829308959656

    Article  ADS  Google Scholar 

  15. M. V. Timofeeva, Tech. Phys. 64 (4), 449 (2019). https://doi.org/10.1134/S1063784219040248

    Article  Google Scholar 

  16. S. H. Park and S. N. Rogak, Aerosol Sci. Technol. 37 (12), 947 (2003).

    Article  ADS  Google Scholar 

  17. C. N. Davies, J. Aerosol Sci. 10 (2), 151 (1979).

    Article  ADS  Google Scholar 

  18. E. S. Asmolov, Abstract of the Doctoral Dissertation in Mathematics and Physics (Moscow State Univ., Moscow, 2015).

  19. W. F. Phillips, Phys. Fluids 18 (9), 1089 (1975).

    Article  ADS  Google Scholar 

  20. A. A. Lushnikov, “Introduction to aerosols,” in Aerosols—Science and Technology, Ed. by I. Agranovski (Wiley, Weinheim, 2010), pp. 1–41. https://doi.org/10.1002/9783527630134

  21. N. A. Fuchs and I. V. Stechkina, Trans. Faraday Soc. 58, 1949 (1962).

    Article  Google Scholar 

  22. R. A. Gussman, J. Appl. Meteorol. 8, 999 (1969).

    Article  ADS  Google Scholar 

  23. W. W. Szymanski, A. Majerowicz, and P. E. Wagner, Aerosol Sci. Technol. 11 (1), 1 (1989).

    Article  ADS  Google Scholar 

  24. P. E. Wagner and M. Kerker, J. Chem. Phys. 66, 638 (1977).

    Article  ADS  Google Scholar 

  25. S. K. Loyalka, J. Colloid Interface Sci. 57 (3), 578 (1976).

    Article  ADS  Google Scholar 

  26. M. Sitarski and J. H. Seinfeld, J. Colloid Interface Sci. 61 (2), 261 (1977).

    Article  ADS  Google Scholar 

  27. B. Nowakowski and M. Sitarski, J. Colloid Interface Sci. 83 (2), 614 (1981).

    Article  ADS  Google Scholar 

  28. V. M. Paskonov, V. I. Polezhaev, and L. A. Chudov, Numerical Modeling of Heat and Mass Transfer Processes (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

Download references

Funding

This study was financially supported by the Ministry of Education and Science of Republic of Kazakhstan, grant no. BR05236656.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Amanbaev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amanbaev, T.R. The Influence of Particle Deposition and Coagulation on the Parameters of Nanoaerosols Flowing through a Duct. Tech. Phys. 66, 384–390 (2021). https://doi.org/10.1134/S1063784221030026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221030026

Navigation