Skip to main content
Log in

Dynamics of the Spatial Structure of a Microsecond Pulsed Barrier Discharge Initiated in Atmospheric Pressure Air in the Point–Plane Geometry at Different Polarities of Feed Voltage

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The evolution of a microsecond pulsed barrier discharge initiated in atmospheric pressure air in the point–plane electrode geometry has been investigated using streak camera photorecording and shadow photography with micrometer resolution and nanosecond exposure. It has been shown that the discharge develops in series and its structure evolves both within a series and from series to series. It has been found that, irrespective of the polarity of a feed voltage pulse, the discharge develops from the point electrode, having the form of a set of many micrometer-diameter channels. At the late stage, the discharge consists of a number of glowing microstructured channels, which occupy the space between the point and barrier and deviate from the point axis, and many faint channels radially propagating over the surface of the barrier. Numerical parameters of the structured have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. M. Starikovskaia, J. Phys. D: Appl. Phys. 47 (35), 353001 (2014). https://doi.org/10.1088/0022-3727/47/35/353001

    Article  ADS  Google Scholar 

  2. N. A. Popov, Plasma Sources Sci. Technol. 20 (4), 045002 (2011). https://doi.org/10.1088/0963-0252/20/4/045002

    Article  ADS  Google Scholar 

  3. N. L. Aleksandrov, S. V. Kindysheva, I. N. Kosarev, S. M. Starikovskaia, and A. Yu. Starikovskii, Proc. Combust. Inst. 32 (1), 205 (2009). https://doi.org/10.1016/j.proci.2008.06.124

    Article  Google Scholar 

  4. Yang Liu, C. Kolbakir, A. Y. Starikovskiy, R. Miles, and Hui Hu, Plasma Sources Sci. Technol. 28 (1), 014001 (2019). https://doi.org/10.1088/1361-6595/aaedf8

    Article  ADS  Google Scholar 

  5. A. Yu. Starikovskii, A. A. Nikipelov, M. M. Nudnova, and D. V. Roupassov, Plasma Sources Sci. Technol. 18 (3), 034015 (2009). https://doi.org/10.1088/0963-0252/18/3/034015

    Article  ADS  Google Scholar 

  6. E. Moreau, J. Phys. D: Appl. Phys. 40 (3), 605 (2007). https://doi.org/10.1088/0022-3727/40/3/S01

    Article  ADS  Google Scholar 

  7. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, Plasma Processes Polym. 5 (6), 503 (2008). https://doi.org/10.1002/ppap.200700154

    Article  Google Scholar 

  8. S. N. Buranov, V. V. Gorokhov, V. I. Karelin, and P. B. Repin, Proc. 12th IEEE Int. Pulsed Power Conf. (Monterey, USA, 1999), p. 1421.

  9. S. N. Buranov, V. I. Karelin, V. D. Selemir, and A. S. Shirshin, Prib. Tekh. Eksp., No.5, 158 (2019). https://doi.org/10.1134/S0032816219040037

  10. M. Erofeev, V. Ripenko, M. Shulepov, and V. Tarasenko, Eur. Phys. J. D 71, 117 (2017). https://doi.org/10.1140/epjd/e2017-70636-6

    Article  ADS  Google Scholar 

  11. Jiting Ouyang, Ben Li, Feng He, and Dong Dai, Plasma Sci. Technol. 20 (10), 103002 (2018). https://doi.org/10.1088/2058-6272/aad325

    Article  ADS  Google Scholar 

  12. S. N. Buranov, V. V. Gorokhov, V. I. Karelin, and P. B. Repin, Tech. Phys. 49 (10), 1284 (2004). https://doi.org/10.1134/1.1809698

    Article  Google Scholar 

  13. S. B. Leonov, V. Petrishchev, and I. V. Adamovich, J. Phys. D: Appl. Phys. 47, 465201 (2014). https://doi.org/10.1088/0022-3727/47/46/465201

    Article  ADS  Google Scholar 

  14. S. A. Shcherbanev, Ch. Ding, S. M. Starikovskaia, and N. A. Popov, Plasma Sources Sci. Technol. 28, 065013 (2019). https://doi.org/10.1088/1361-6595/ab2230

    Article  ADS  Google Scholar 

  15. S. V. Avtaeva, Barrier Discharge: Study and Application (Kyrgys.-Ross. Slavyan. Univ., Bishkek, 2009) [in Russian].

    Google Scholar 

  16. A. A. Tren’kin, K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, and S. Yu. Kharitonov, Zh. Tekh. Fiz. 90 (12), 2039 (2020). https://doi.org/10.21883/JTF.2020.12.50119.435-19

    Article  Google Scholar 

  17. A. A. Tren’kin, K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, and S. Yu. Kharitonov, Tech. Phys. 64 (4), 470 (2019). https://doi.org/10.1134/S1063784219040261

    Article  Google Scholar 

  18. A.A. Tren’kin, Tech. Phys. 64 (2), 159 (2019). https://doi.org/10.1134/S1063784219020245

    Article  Google Scholar 

  19. A. V. Perminov and A. A. Tren’kin, Tech. Phys. 50 (9), 1158 (2005). https://doi.org/10.1134/1.2051454

    Article  Google Scholar 

  20. E. V. Parkevich, M. A. Medvedev, A. I. Khirianova, G. V. Ivanenkov, A. S. Selyukov, A. V. Agafonov, K. V. Shpakov, and A. V. Oginov, Plasma Sources Sci. Technol. 28, 125007 (2019). https://doi.org/10.1088/1361-6595/ab518e

    Article  ADS  Google Scholar 

  21. E. V. Parkevich, M. A. Medvedev, G. V. Ivanenkov, A. I. Khirianova, A. S. Selyukov, A. V. Agafonov, Ph.A. Korneev, S. Y. Gus’kov, and A. R. Mingaleev, Plasma Sources Sci. Technol. 28, 095003 (2019). https://doi.org/10.1088/1361-6595/ab3768

    Article  ADS  Google Scholar 

  22. X. P. Xu and M. J. Kushner, J. Appl. Phys. 48 (8), 4153 (1998). https://doi.org/10.1063/1.368629

    Article  ADS  Google Scholar 

  23. Rui Liu, Zhe Yu, Huijuan Cao, Pu Liu, and Zhitao Zhang, Plasma Sci. Technol. 21, 054001 (2019). https://doi.org/10.1088/2058-6272/aafbbc

    Article  ADS  Google Scholar 

  24. S. N. Buranov, V. V. Gorokhov, V. I. Karelin, and A. A. Tren’kin, Tech. Phys. 49 (9), 1227 (2004). https://doi.org/10.1134/1.1800248

    Article  Google Scholar 

  25. Yu. P. Raiser, Physics of Gas Discharge (Springer, Berlin, 1991).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tren’kin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tren’kin, A.A., Almazova, K.I., Belonogov, A.N. et al. Dynamics of the Spatial Structure of a Microsecond Pulsed Barrier Discharge Initiated in Atmospheric Pressure Air in the Point–Plane Geometry at Different Polarities of Feed Voltage. Tech. Phys. 66, 243–249 (2021). https://doi.org/10.1134/S1063784221020225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221020225

Navigation