Skip to main content
Log in

Analysis of Absorbing Periodic Structures Formed by Cylindrical Electromagnetic Black Holes

  • RADIOPHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A 2D problem of electromagnetic plane wave scattering by 1D-periodic structures with cylindrical elements of electromagnetic black hole type arranged on a semi-infinite substrate is considered. Two algorithms corresponding to the cases of E- and H-polarization are developed on the basis of the hybrid projection method with accounting for refractive index distributions in the black holes of different types. The algorithms are also generalized on the case of arrangement of the black holes on a perfectly conducting screen. A number of numerical results characterizing both the effectiveness of the algorithms themselves and the performance of the absorbing structures with black holes are presented. The characteristics of absorption in the indicated structures are compared to the similar characteristics corresponding to the structures with wedge-shaped elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. E. E. Narimanov and A. V. Kildishev, Appl. Phys. Lett. 95, 041106 (2009).

    Article  ADS  Google Scholar 

  2. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, New J. Phys. 12, 063006 (2010).

    Article  ADS  Google Scholar 

  3. A. V. Kildishev, L. J. Prokopeva, and E. E. Narimanov, Opt. Express 18 (16), 16646 (2010).

    Article  ADS  Google Scholar 

  4. W. Lu, J.-F. Jin, Z. Lin, and H. Chen, J. Appl. Phys. 108, 064517 (2010).

    Article  ADS  Google Scholar 

  5. H.-W. Wang and L.-W. Chen, J. Appl. Phys. 109, 103104 (2011).

    Article  ADS  Google Scholar 

  6. Ya.I. Chizhevskaya, O. N. Smolnikova, and S. P. Skobelev, Radiotekhnika, No. 4, 23 (2018). http://radiotec.ru/article/20759#english.

  7. A. S. Gutman, J. Appl. Phys. 25 (7), 855 (1954).

    Article  ADS  Google Scholar 

  8. S. Li, L. Li, Z. Lin, H. Y. Chen, J. Zi, and C. T. Chan, Phys. Rev. B 82, 054204 (2010).

    Article  ADS  Google Scholar 

  9. S. I. Maslovski, C. R. Simovski, and S. A. Tretyakov, New J. Phys. 18, 013034 (2016).

    Article  ADS  Google Scholar 

  10. V. G. Veselago, Sov. Phys.-Usp. 10 (4), 509 (1968).

    Article  ADS  Google Scholar 

  11. Ya. I. Chizhevskaya and S. P. Skobelev, Opt. Spectrosc. 127 (6), 1085 (2019).

    Article  Google Scholar 

  12. C. A. Valagiannopoulos and S. A. Tretyakov, IEEE Trans. Antennas Propag. 62 (10), 5089 (2014).

    Article  ADS  Google Scholar 

  13. Y. Ra’di, V. S. Asadchy, S. U. Kosulnikov, M. M. Omelyanovich, D. Morits, A. V. Osipov, C. R. Simovski, and S. A. Tretyakov, ACS Photonics 2 (5), 653 (2015). https://doi.org/10.1021/acsphotonics.5b00073

    Article  Google Scholar 

  14. P. Bradley, M. Munoz, C. Brennan, and Y. Hao, Proc. 12th Eur. Conf. on Antennas and Propagation (EuCAP’2018) (April 8–13, 2018, London, UK).

  15. C. Yang, W. D. Burnside, and R. C. Rudduck, IEEE Trans. Antennas Propag. 40 (6), 652 (1992).

    Article  ADS  Google Scholar 

  16. A. A. Shcherbakov and A. V. Tishchenko, Quantum Electron. 40 (6), 538 (2010). https://doi.org/10.1070/QE2010v040n06ABEH014284

    Article  ADS  Google Scholar 

  17. K. Dossou, M. A. Byrne, and L. C. Botten, J. Comput. Phys. 219, 120 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  18. F. I. Baida and A. Belkhir, in Gratings: Theory and Numeric Applications, Ed. by E. Popov (Inst. Fresnel, CNRS, AMU, Marseille, 2012), Chap. 9, p. 333. http://www.fresnel.fr/files/gratings/Chapter9.pdf.

  19. E. Popov, in Gratings: Theory and Numeric Applications, Ed. by E. Popov (Inst. Fresnel, CNRS, AMU, Marseille, 2012), Chap. 7, p. 247. http://www.fresnel.fr/files/gratings/Chapter7.pdf.

  20. S. P. Skobelev and O. N. Smolnikova, J. Commun. Technol. Electron. 57 (10), 1073 (2012). https://doi.org/10.1134/S1064226912070121

    Article  Google Scholar 

  21. Gratings: Theory and Numeric Applications, Ed. by E. Popov (Inst. Fresnel, CNRS, AMU, Marseille, 2012). http://www.fresnel.fr/numerical-grating-book.

  22. W. P. Pinello, R. Lee, and A. C. Cangellaris, IEEE Trans. Microwave Theory Tech. 42 (12), 2294 (1994).

    Article  ADS  Google Scholar 

  23. S. P. Skobelev and A. A. Yaparova, J. Commun. Technol. Electron. 52 (3), 293 (2007). https://doi.org/10.1134/S1064226907030023

    Article  Google Scholar 

  24. S. K. Sharma, H. Xin, B. I. Wu, J. C. Vardaxoglou, and C. H. Chan, IEEE Antennas Wireless Propag. Lett. 17 (11), 1998 (2018). https://doi.org/10.1109/LAWP.2018.2877472

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Skobelev.

Ethics declarations

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chizhevskaya, Y.I., Smolnikova, O.N. & Skobelev, S.P. Analysis of Absorbing Periodic Structures Formed by Cylindrical Electromagnetic Black Holes. Tech. Phys. 66, 316–324 (2021). https://doi.org/10.1134/S1063784221020079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221020079

Navigation