Skip to main content
Log in

Generation of a Photoacoustic Response of a Two-Layer Polymer/Gel Structure

  • PHYSICS FOR SCIENCES OF LIFE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Generation processes of a photoacoustic response of a layered polyethylene/hydrogel structure by its irradiation with periodically modulated light have been experimentally studied. The heat sources are located in a gel near the interface with polyethylene. The response in the form of the pressure oscillations occurs as a result of the thermoelastic strain of the polyethylene layer by its thickness-nonuniform heating by a thermal wave. The obtained results can be useful for modification of the techniques based on the diffusion processes in gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. C. Romao, S. A. Martins, J. Germano, F. A. Cardoso, S. Cardoso, and P. P. Freitas, ACS Nano 11 (11), 10659 (2017). https://doi.org/10.1021/acsnano.7b06703

    Article  Google Scholar 

  2. E. A. Tutov, Tech. Phys. 57 (6), 765 (2012). https://doi.org/10.1134/S1063784212060242

    Article  Google Scholar 

  3. S. Behera and P. A. Mahanwar, Polym.-Plast. Technol. Mater. 59 (4), 341 (2020). https://doi.org/10.1080/25740881.2019.1647239

    Article  Google Scholar 

  4. N. A. Peppas and A. S. Hoffman, “Hydrogels,” in Biomaterials Science, 4th ed. (Academic, 2020), pp. 153–166. https://doi.org/10.1016/B978-0-12-816137-1.00014-3

  5. B. W. Pogue and M. S. Patterson, J. Biomed. Opt. 11 (4), 041102 (2006). https://doi.org/10.1117/1.2335429

    Article  ADS  Google Scholar 

  6. W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, J. Biomed. Opt. 21 (10), 101405 (2016). https://doi.org/10.1117/1.JBO.21.10.101405

    Article  ADS  Google Scholar 

  7. H. M. Heres, M. U. Arabul, M. C. M. Rutten, F.  N.  Van deVosse, and R. G. P. Lopata, J. Biomed. Opt. 22 (4), 041013 (2017). https://doi.org/10.1117/1.JBO.22.4.041013

    Article  ADS  Google Scholar 

  8. E. S. Nasonova, Tsitologiya 50 (11), 927 (2008).

    Google Scholar 

  9. P. H. Johnson and L. I. Grossman, Biochemistry 16 (19), 4217 (1977). https://doi.org/10.1021/bi00638a014

    Article  Google Scholar 

  10. M. Hanauer, S. Pierrat, I. Zins, A. Lotz, and C. Sönnichsen, Nano Lett. 7, 2881 (2007). https://doi.org/10.1021/nl071615y

    Article  ADS  Google Scholar 

  11. Y. Liu, J.-J. Yin, and Z. Nie, Nano Res. 7, 1719 (2014). https://doi.org/10.1007/s12274-014-0541-9

    Article  Google Scholar 

  12. L. V. Wang and S. Hu, Science 335, 1458 (2012). https://doi.org/10.1126/science.1216210

    Article  ADS  Google Scholar 

  13. L. V. Wang, Med. Phys. 35 (12), 5758 (2008). https://doi.org/10.1118/1.3013698

    Article  Google Scholar 

  14. A. C. Tam, Rev. Mod. Phys. 58 (2), 381 (1986). https://doi.org/10.1103/RevModPhys.58.381

    Article  ADS  Google Scholar 

  15. M. J. Adams and G. F. Kirkbright, Analyst 102 (1213), 281 (1977). https://doi.org/10.1039/AN9770200281

    Article  ADS  Google Scholar 

  16. D. A. Andrusenko and I. Ya. Kucherov, Tech. Phys. 44 (12), 1397 (1999). https://doi.org/10.1134/1.1259558

    Article  Google Scholar 

  17. U. Zammit, F. Mercuri, S. Paoloni, M. Marinelli, and R. Pizzoferrato, J. Appl. Phys. 117, 105104 (2015). https://doi.org/10.1063/1.4914491

    Article  ADS  Google Scholar 

  18. A. Rosencwaig and A. Gersho, J. Appl. Phys. 47 (1), 64 (1976). https://doi.org/10.1063/1.322296

    Article  ADS  Google Scholar 

  19. L. F. Perondi and L. C. M. Miranda, J. Appl. Phys. 62 (7), 2955 (1987). https://doi.org/10.1063/1.339380

    Article  ADS  Google Scholar 

  20. P. Charpentier, F. Lepoutre, and L. Bertrand, J. Appl. Phys. 53 (1), 608 (1982). https://doi.org/10.1063/1.329966

    Article  ADS  Google Scholar 

  21. A. Somer, A. Gonçalves, T. V. Moreno, G. K. da Cruz, M. L. Baesso, N. G. C. Astrath, and A. Novatski, Meas. Sci. Technol. 31 (7), 075202 (2020). https://doi.org/10.1088/1361-6501/ab786a

    Article  ADS  Google Scholar 

  22. E. M. Zveriaev, Preprints No. 33 (Keldysh Inst. Appl. Math., Russ. Acad. Sci., Moscow, 2016). https://doi.org/10.20948/prepr-2016-33

  23. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, Chichester, 1980). https://doi.org/10.1002/ange.19820940341

  24. L. Yu. Sadovskaya, T. V. Sviridova, T. M. Yakimenko, and D. V. Sviridov, Dokl. Nats. Akad. Nauk Belorus. 60 (2), 58 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Andrusenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrusenko, D.A., Alekseev, A.N., Kuzmich, A.G. et al. Generation of a Photoacoustic Response of a Two-Layer Polymer/Gel Structure. Tech. Phys. 66, 349–355 (2021). https://doi.org/10.1134/S1063784221020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221020043

Navigation