Skip to main content
Log in

Dynamics of 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX in Three Cell Lines of Different Origin

  • PHYSICS FOR SCIENCES OF LIFE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The dynamics of synthesis and accumulation of protoporphyrin IX induced by 5-aminolevulinic acid (5-ALA) was studied using confocal fluorescence microscopy in three established cell lines: immortalized cells originated from human tumor tissues—epithelial carcinoma (HeLa cells) and lung adenocarcinoma (A549 cells)—and immortalized fibroblast-like mouse embryo cells (3T3 line). The accumulation of protoporphyrin IX in cell cultures was estimated by analyzing the intensity of its fluorescence. The dynamics of changes in the fluorescence intensity with the cell incubation duration in the presence of 5-ALA and with the 5-ALA concentration was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. A. Zhikhoreva, A. V. Belashov, D. A. Gorbenko, N. A. Avdonkina, I. A. Baldueva, A. B. Danilova, M. L. Gelfond, T. L. Nekhaeva, I. V. Semenova, and O. S. Vasyutinskii, Russ. J. Phys. Chem. B 13 (3), 394 (2019). https://doi.org/10.1134/S1990793119030242

    Article  Google Scholar 

  2. D. A. Gorbenko, A. V. Belashov, T. N. Belyaeva, E.  S.  Kornilova, I. V. Semenova, and O. S. Vasyutinskii, J. Phys.: Conf. Ser. 1236, 012015 (2019). https://doi.org/10.1088/1742-6596/1236/1/012015

    Article  Google Scholar 

  3. H. Abrahamse and M. R. Hamblin, Biochem. J. 473 (4), 347 (2016).

    Article  Google Scholar 

  4. J. Moan, O. Bech, J. M. Gaullier, T. Stokke, H. B. Steen, L. W. Ma, and K. Berg, Int. J. Cancer 75, 134 (1998).

    Article  Google Scholar 

  5. M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wańczyk, K. Bojarczuk, and J. Golab, Molecules 16 (5), 4140 (2011). https://doi.org/10.3390/molecules16054140

    Article  Google Scholar 

  6. D. J. Piacquadio., D. M. Chen, H. F. Farber, J. F. Fowler, Jr., S. D. Glazer, J. J. Goodman, L. L. Hruza, E. W. B. Jeffes, M. R. Ling, T. J. Phillips, T. M. Rallis, R. K. Scher, C. R. Taylor, and G. D. Weinstein, Arch. Dermatol. 140, 41 (2004). https://doi.org/10.1001/archderm.140.1.41

    Article  Google Scholar 

  7. K. Mahmoudi, K. L. Garvey, A. Bouras, G. Cramer, H. Stepp, J. G. Jesu Raj, D. Bozec, T. M. Busch, and C. G. Hadjipanayis, J. Neurooncol. 141 (3), 595 (2019). https://doi.org/10.1007/s11060-019-03103-4

    Article  Google Scholar 

  8. S. Firdous, M. Nawaz, M. Ikram, and M. Ahmed, Laser Phys. 22 (3), 626 (2012). https://doi.org/10.1134/S1054660X12030048

    Article  ADS  Google Scholar 

  9. J. C. Kennedy, and R. H. Pottier, J. Photochem. Photobiol., B 14 (4), 275 (1992). https://doi.org/10.1016/1011-1344(92)85108-7

    Article  Google Scholar 

  10. J. E. Lawrence, A. S. Patel, R. A. Rovin, R. J. Belton, C. E. Bammert, C. J. Steele, and R. J. Winn, Int. Scholarly Res. Not. 2014, 405360 (2014). https://doi.org/10.1155/2014/405360

  11. A. Briel-Pumpa, T. Beez, L. Ebbert, M. Remke, S. Wein- hold, M. C. Sabel, and R. V. Sorg, J. Photochem. Photobiol., B 189, 298 (2018). https://doi.org/10.1016/j.jphotobiol.2018.11.002

    Article  Google Scholar 

  12. K. R. Rollakanti, S. C. Kanick, S. C. Davis, B. W. Pogue, and E. V. Maytin, Photonics Lasers Med. 2 (4), 287 (2013). https://doi.org/10.1515/plm-2013-0030

    Article  Google Scholar 

  13. P. Bankhead, Manual (Queen’s Univ. Belfast, 2014).

    Google Scholar 

  14. K. A. Johnson, FEBS Lett. 587 (17), 2753 (2013). https://doi.org/10.1016/j.febslet.2013.07.012

    Article  Google Scholar 

  15. D. L. Purich, Enzyme Kinetics: Catalysis & Control: A Reference of Theory and Best-Practice Methods (Elsevier, 2010).

    Google Scholar 

  16. E. R. Gallegos, I. DeLeón Rodríguez, L. A. Martínez Guzmán, and A. J. Pérez Zapata, Arch. Med. Res. 30 (3), 163 (1999). https://doi.org/10.1016/S0188-0128(99)00013-5

    Article  Google Scholar 

  17. J. E. Lawrence, A. S. Patel, R. A. Rovin, R. J. Belton, Jr., C. E. Bammert, C. J. Steele, and R. J. Winn, ISRN Surg. 2014, 405360 (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960765/

    Article  Google Scholar 

  18. Y.-H. Lin, H.-M. Chang, F.-P. Chang, C.-R. Shen, C.-L. Liu, W.-Y. Mao, C.-C. Lin, H.-S. Lee, and C.-N. Shen, FEBS Lett. 587 (19), 3202 (2013). https://doi.org/10.1016/j.febslet.2013.08.011

    Article  Google Scholar 

  19. M. Sachar, K. E. Anderson, and X. Ma, J. Pharmacol. Exp. Ther. 356 (2), 267 (2016). https://doi.org/10.1124/jpet.115.228130

    Article  Google Scholar 

Download references

Funding

A.V. Belashov is grateful to the Council for Grants of the President of Russian Federation, project SP-2349.2019.4. T.N. Belyaeva, I.K. Litvinov, and E.S. Kornilova are grateful to the Ministry of Education and Science of Russian Federation (topic registration no. AAAA-A19-119020190093-9) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gorbenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbenko, D.A., Belashov, A.V., Belyaeva, T.N. et al. Dynamics of 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX in Three Cell Lines of Different Origin. Tech. Phys. 66, 145–148 (2021). https://doi.org/10.1134/S1063784221010084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221010084

Navigation