Skip to main content
Log in

Soot Formation during the Decomposition of Chlorine-Containing Hydrocarbons with an AC Plasma Torch

  • ELECTROPHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The process of decomposition of organochlorine compounds by a three-phase ac plasma torch with vortex arc stabilization is studied. The plasma torch had two zones for introducing the plasma-forming media: the near-electrode and arc-burning zones. The near-electrode zone was fed with a shielding gas, and the arc-burning was fed with water vapor, methane, and vapors of organochlorine compounds. The resulting products were analyzed using mass spectrometry, XRD, scanning electron microscopy, and IR spectroscopy. In an experiment with chlorobenzene and carbon tetrachloride, in the gaseous and liquid fractions, only one chlorine-containing compound, HCl, was detected. However, in the experiment with chlorobenzene, the soot yield was 0.98 wt % of the raw material and the chlorine content in the soot was 1.61%. IR spectral data confirm the presence of the Cl–O and Cl–С bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. R. McIlveen-Wright, F. Pinto, L. Armesto, M. A. Caballero, M. P. Aznard, A. Cabanillas, Y. Huang, C. Franco, I. Gulyurtlu, and J. T. McMullan, Fuel Process. Technol. 87 (9), 793 (2006).

    Article  Google Scholar 

  2. A. A. Khan, W. de Jong, P. J. Jansens, and H. Spliethoff, Fuel Process. Technol. 90 (1), 21 (2009).

    Article  Google Scholar 

  3. D. G. Olson, K. Tsuji, and I. Shiraishi, Fuel Process. Technol. 6566, 393 (2000).

  4. Xinchao Pan, Jianhua Yan, and Zhengmiao Xie, J. Environ. Sci. 25 (7), 1362 (2013). https://doi.org/10.1016/S1001-0742(12)60196-X

    Article  Google Scholar 

  5. M. Schiavon, M. Scapinello, P. Tosi, M. Ragazzi, V. Torretta, and E. C. Rada, J. Cleaner Prod. 104, 211 (2015). https://doi.org/10.1016/j.jclepro.2015.05.034

    Article  Google Scholar 

  6. S. Evangelisti, C. Tagliaferri, R. Clift, P. Lettieri, R. Taylor, and C. Chapman, Waste Manage. 43, 485 (2015). https://doi.org/10.1016/j.wasman.2015.05.037

    Article  Google Scholar 

  7. D. Czylkowski, B. Hrycak, M. Jasiński, M. Dors, and J. Mizeraczyk, Energy 113, 653 (2016). https://doi.org/10.1016/j.energy.2016.07.088

    Article  Google Scholar 

  8. Sang Jun Yoon and Jae-Goo Lee, Int. J. Hydrogen Energy 37 (22), 17093 (2012).

    Article  Google Scholar 

  9. A. S. Lerner, A. N. Bratsev, V. E. Popov, V. A. Kuznetsov, A. A. Ufimtsev, S. V. Shengel, and D. I. Subbotin, Glass Phys. Chem. 38 (6), 511 (2012).

    Article  Google Scholar 

  10. Dong Hun Shin, Yong Cheol Hong, Sang Ju Lee, Ye Jin Kim, Chang Hyun Cho, Suk Hwal Ma, Se Min Chun, Bong Ju Lee, and Han Sup Uhm, Surf. Coat. Technol. 228 (Suppl. 1), S520 (2013).

    Article  Google Scholar 

  11. A. Tamošiūnas, P. Valatkevičius, V. Grigaitienė, V. Valinčius, and N. Striūgas, J. Cleaner Prod. 130, 187 (2016). https://doi.org/10.1016/j.jclepro.2015.11.024

    Article  Google Scholar 

  12. T. Jędrzejczyk, Z. Kołacński, D. Koza, G. Raniszewski, Ł. Szymański, and S. Wiak, Open Chem. 13, 156 (2015). https://doi.org/10.1515/chem-2015-0023

    Article  Google Scholar 

  13. P. Fazekas, E. Bodis, A. M. Keszler, Z. Czegeny, S. Klebert, Z. Karoly, and J. Szepvolgyi, Plasma Chem. Plasma Process. 33, 765 (2013).

    Article  Google Scholar 

  14. Ph. G. Rutberg, Gh. V. Nakonechny, A. V. Pavlov, S. D. Popov, E. O. Serba, and A. V. Surov, J. Phys. D: Appl. Phys. 48, 245204 (2015).

    Article  ADS  Google Scholar 

  15. N. V. Obraztsov, V. E. Popov, and D. I. Subbotin, in Proc. Sci. Forum with Int. Participation “Science Week of Peter the Great St. Petersburg Polytechnic University,” November 30–December 5, 2015, St. Petersburg, Russia (St. Petersburg, 2015), p. 144. https://week-science.spbstu.ru/userfiles/volumes/42/file.pdf

  16. Ph. G. Rutberg, V. E. Kuznetsov, V. E. Popov, S. D. Popov, A. V. Surov, D. I. Subbotin, and A. N. Bratsev, Appl. Energy 148, 159 (2015).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation within the framework of state order no. 0057-2019-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Obraztsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obraztsov, N.V., Subbotin, D.I., Surov, A.V. et al. Soot Formation during the Decomposition of Chlorine-Containing Hydrocarbons with an AC Plasma Torch. Tech. Phys. 65, 2061–2065 (2020). https://doi.org/10.1134/S1063784220120178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220120178

Navigation