Skip to main content
Log in

High-frequency Magnetotransport in a thin Metal Layer with Variable Specularity Coefficients of its Boundaries

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A theoretical model of the conductivity of a thin metal layer placed in a longitudinal constant magnetic and alternative electric field is constructed, taking into account the diffuse-mirror boundary conditions. An analytical expression is obtained for the integral conductivity as a function of dimensionless parameters: layer thickness, electric field frequency, magnetic field induction and surface specularity coefficients. The dependences of the layer conductivity on the aforenamed parameters are analyzed. The results are compared with known experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. Kowsar, S. F. U. Farhad, and S. N. Sakib, Int. J. Renewable Energy Res. 8, 2218 (2018).

    Google Scholar 

  2. B. Godefroid and G. Kozyreff, Phys. Rev. Appl. 8 (3), 034024 (2017). https://doi.org/10.1103/PhysRevApplied.8.034024

    Article  ADS  Google Scholar 

  3. S. Bhattacharya, I. Baydoun, M. Lin, and S. John, Phys. Rev. Appl. 11 (1), 014005 (2019). https://doi.org/10.1103/PhysRevApplied.11.014005

    Article  ADS  Google Scholar 

  4. L. S. Lunin, M. L. Lunina, A. S. Pashchenko, D. L. Alfimova, D. A. Arustamyan, and A. E. Kazakova, Tech. Phys. Lett. 45 (6), 250 (2019). https://doi.org/10.1134/S1063785019030313

    Article  ADS  Google Scholar 

  5. A. B. Nikolskaia, M. F. Vildanova, S. S. Kozlov, and O. I. Shevaleevskiy, Semiconductors 52 (1), 88 (2018). https://doi.org/10.1134/S1063782618010165

    Article  ADS  Google Scholar 

  6. Al. A. Nikitin, An. A. Nikitin, A. B. Ustinov, E. Lähderanta, and B. A. Kalinikos, Tech. Phys. 61 (6), 913 (2016). https://doi.org/10.1134/S106378421606013X

  7. D. A. Usanov, A. V. Skripal’, M. K. Merdanov, and V. O. Gorlitskii, Tech. Phys. 61 (2), 221 (2016). https://doi.org/10.1134/S1063784216020250

    Article  Google Scholar 

  8. L. Wang, M. Yin, A. Khan, S. Muhtadi, F. Asif, E.  S.  Choi, and T. Datta, Phys. Rev. Appl. 9 (2), 024006 (2018). https://doi.org/10.1103/physrevapplied.9.024006

    Article  ADS  Google Scholar 

  9. M. A. Abeed, J. L. Drobitch, and S. Bandyopadhyay, Phys. Rev. Appl. 11 (5), 054069 (2019). https://doi.org/10.1103/PhysRevApplied.11.054069

    Article  ADS  Google Scholar 

  10. A. I. Anselm, Introduction to Semiconductors Theory (Prenctice-Hall, Englewood Cliffs, 1981).

    Google Scholar 

  11. I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Electron Theory of Metals (Consultants Bureau, New York, 1973).

    MATH  Google Scholar 

  12. K. Fuchs, Proc. Cambridge Philos. Soc. 34, 100 (1938). https://doi.org/10.1017/S0305004100019952

    Article  ADS  Google Scholar 

  13. E. H. Sondheimer, Adv. Phys. 50, 499 (2001). https://doi.org/10.1080/00018730110102187

    Article  ADS  Google Scholar 

  14. Y. S. Way and Y. H. Kao, Phys. Rev. B 5, 2039 (1972). https://doi.org/10.1103/PhysRevB.5.2039

    Article  ADS  Google Scholar 

  15. R. G. Chambers, Proc. R. Soc. London, Ser. A 202, 378 (1950). https://doi.org/10.1098/rspa.1950.0107

    Article  ADS  Google Scholar 

  16. J. Peterseim, G. Thummes, and H. H. Mende, Phys. Status Solidi A 59, K25 (1980). https://doi.org/10.1002/pssa.2210590160

    Article  ADS  Google Scholar 

  17. V. Kuckhermann, G. Thummes, and H. H. Mende, Phys. Status Solidi A 73, 439 (1982). https://doi.org/10.1002/pssa.2210730218

    Article  ADS  Google Scholar 

  18. A. A. Yushkanov, O. V. Savenko, and I. A. Kuznetsova, Phys. Scr. 95 (4), 045805 (2020). https://doi.org/10.1088/1402-4896/ab635a

    Article  ADS  Google Scholar 

  19. L. Moraga, C. Arenas, R. Henriquez, S. Bravo, and B. Solis, Phys. B 499, 17 (2016). https://doi.org/10.1016/j.physb.2016.07.001

    Article  ADS  Google Scholar 

  20. R. Henriquez, S. Oyarzun, M. Flores, M. A. Suarez, L.  Moraga, G. Kremer, C. A. Gonzalez-Fuentes, M.  Robles, and R. C. Munoz, J. Appl. Phys. 108 (12), 123704 (2010). https://doi.org/10.1063/1.3525704

    Article  ADS  Google Scholar 

  21. R. C. Munoz, M. A. Suárez, S. Oyarzún, R. Henríquez, A. Espinosa, G. Kremer, L. Moraga, S. Cancino, and R. Morales, Phys. Rev. B 81 (16), 165408 (2010). https://doi.org/10.1103/PhysRevB.81.165408

    Article  ADS  Google Scholar 

  22. S. Oyarzún, R. Henríquez, M. A. Suárez, L. Moraga, G. Kremer, and R. C. Munoz, Appl. Surf. Sci. 289, 167 (2014). https://doi.org/10.1016/j.apsusc.2013.10.128

    Article  ADS  Google Scholar 

  23. A. I. Utkin, E. V. Zavitaev, and A. A. Yushkanov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 10, 962 (2016). https://doi.org/10.1134/S1027451016050153

    Article  Google Scholar 

  24. A. I. Utkin and A. A. Yushkanov, Russ. Microelectron. 45 (5), 357 (2016). https://doi.org/10.1134/S1063739716050103

    Article  Google Scholar 

  25. A. I. Utkin and A. A. Yushkanov, Tech. Phys. 61 (10), 1457 (2016). https://doi.org/10.1134/S1063784216100273

    Article  Google Scholar 

  26. I. A. Kuznetsova, O. V. Savenko, and A. A. Yushkanov, Tech. Phys. 62 (12), 1766 (2017). https://doi.org/10.1134/S1063784217120143

    Article  Google Scholar 

  27. I. A. Kuznetsova, D. N. Romanov, and A. A. Yushkanov, Russ. Microelectron. 47 (3), 201 (2018). https://doi.org/10.1134/S1063739718030071

    Article  Google Scholar 

  28. A. I. Utkin and A. A. Yushkanov, Opt. Spectrosc. 124 (2), 247 (2018). https://doi.org/10.1134/S0030400X18020194

    Article  Google Scholar 

  29. A. I. Utkin and A. A. Yushkanov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 13, 221 (2019). https://doi.org/10.1134/S1027451019020186

    Article  Google Scholar 

  30. E. V. Zavitaev, K. E. Kharitonov, and A. A. Yushkanov, Tech. Phys. 64 (5), 593 (2019). https://doi.org/10.1134/S1063784219050268

    Article  Google Scholar 

  31. I. A. Kuznetsova, D. N. Romanov, and A. A. Yushkanov, Phys. Scr. 94, 115805 (2019). https://doi.org/10.1088/1402-4896/ab20e4

    Article  ADS  Google Scholar 

  32. I. A. Kuznetsova, O. V. Savenko, and A. A. Yushkanov, Russ. Microelectron. 45 (2) 119 (2016). https://doi.org/10.1134/S1063739716020074

    Article  Google Scholar 

  33. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, 2nd ed. (Pergamon, Oxford, 1984).

    Google Scholar 

  34. J. S. Chawla, F. Gstrein, K. P. O’Brien, J. S. Clarke, D. Gall, Phys. Rev. B 84 (23), 235423 (2011). https://doi.org/10.1103/PhysRevB.84.235423

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Savenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, P.A., Savenko, O.V. & Yushkanov, A.A. High-frequency Magnetotransport in a thin Metal Layer with Variable Specularity Coefficients of its Boundaries. Tech. Phys. 65, 1912–1921 (2020). https://doi.org/10.1134/S1063784220120130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220120130

Navigation