Skip to main content
Log in

An Investigation of the Conductive and Ferroelectric Properties of BZT Films

Technical Physics Aims and scope Submit manuscript

Abstract

Local polarization processes in BaTi1 – xZrxO3 thin films are studied using contact conductive scanning probe microscopy and piezoelectric response microscopy. The relationship between the direction of the created domains and the magnitude of the flowing currents is established. The value of the residual polarization is found. Using scanning probe microscopy, the hysteresis loop is measured and the values of the piezoelectric modulus dzz and coercive field Ec for these films are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. O. G. Vendik. Phys. Solid State 51 (7), 1529 (2009). https://doi.org/10.1134/S1063783409070543

    Article  ADS  Google Scholar 

  2. S. Gevorgian, Ferroelectrics in Microwave Devices, Circuits and Systems (Springer, London, 2009), p. 396.

    Book  Google Scholar 

  3. T. Maiti, R. Guo, and A. S. Bhalla, Appl. Phys. Lett. 89, 122909 (2006).

    Article  ADS  Google Scholar 

  4. W. S. Choi, B. S. Jang, D.-G. Lim, J. Yi, and B. Hong, J. Cryst. Growth 237239, 438 (2002).

  5. L. A. Delimova, E. V. Gushchina, N. Z. Zaitseva, D. S. Seregin, K. A. Vorotilov, and A. S. Sigov, Phys. Solid State 60 (3), 553 (2018). https://doi.org/10.1134/S1063783418030058

    Article  ADS  Google Scholar 

  6. J. Qiana, P. Hu, Ch. Liu, J. Jiang, Zh. Dan, J. Ma, Y. Lin, C.-W. Nan, and Y. Shen, Sci. Bull. 63 (6), 356 (2018). https://doi.org/10.1016/j.scib.2018.02.016

    Article  Google Scholar 

  7. M. Kumari, D. G. B. Diestra, R. Katiyar, J. Shah, R. K. Kotnala, and R. Chatterjee, J. Appl. Phys. 121, 034101 (2017).

    Article  ADS  Google Scholar 

  8. Q. R. Lin, D. Y. Wang, B. C. Luo, R. Ding, D. L. Lorenzen, and S. Li, Appl. Surf. Sci. 331, 477 (2015).

    Article  ADS  Google Scholar 

  9. D. Wu, Ph. Sciau, S. Schamm, F. Gloux, and M. V. Fernandez, J. Phys. D: Appl. Phys. 40, 4701 (2007).

    Article  ADS  Google Scholar 

  10. V. V. Shvartsman and D. C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012).

    Article  Google Scholar 

  11. S. J. Kuang, X. G. Tang, L. Y. Li, Y. P. Jiang, and Q. X. Liu, Scr. Mater. 61, 68 (2009).

    Article  Google Scholar 

  12. W. F. Qin, J. Xiong, J. Zhu, J. L. Tang, W. J. Jie, Y. Zhang, and Y. R. Li, J. Mater Sci. 43 (1), 409 (2008). https://doi.org/10.1007/s10853-007-2177-6

    Article  ADS  Google Scholar 

  13. A. V. Ankudinov and A. N. Titkov, Phys. Solid State 47 (6), 1148 (2005). https://doi.org/10.1134/1.1946871

    Article  ADS  Google Scholar 

  14. L. A. Delimova, E. V. Gushchina, V. S. Yuferev, and I. V. Grekhov, Phys. Solid State 56 (12), 2451 (2014). https://doi.org/10.1134/S1063783414120099

    Article  ADS  Google Scholar 

  15. C. H. Jung, S. I. Woo, Y. S. Kim, and K. S. No, Thin Solid Films 519 (10), 3291 (2011). https://doi.org/10.1016/j.tsf.2010.12.149

    Article  ADS  Google Scholar 

  16. F. M. Pontes, M. T. Escote, C. C. Escudeiro, E. R. Leite, and E. Londo, J. Appl. Phys. 96 (8), 4386 (2004).

    Article  ADS  Google Scholar 

  17. T. B. Wu, C. M. Wu, and M. L. Chen, Appl. Phys. Lett. 69 (18), 2659 (1996).

    Article  ADS  Google Scholar 

  18. J. Z. Xin, C. W. Leung, and H. L. W. Chan, Thin Solid Films 519, 6313 (2011).

    Article  ADS  Google Scholar 

  19. V. Thery, Al. Bayart, J.-F. Blach, P. Roussel, and S. Saitzeka, Appl. Surf. Sci. 351, 480 (2015).

    Article  Google Scholar 

  20. W. J. Jie, J. Zhu, W. F. Qin, X. H. Wei, J. Xiong, Y. Zhang, A. Bhalla, and Y. R. Li, J. Phys. D: Appl. Phys. 40, 2854 (2007).

    Article  ADS  Google Scholar 

  21. A. R. E. James and C. Prakash, Appl. Phys. Lett. 84, 1165 (2004).

    Article  ADS  Google Scholar 

  22. X. G. Tang, Q. X. Liu, and Y. P. Jiang, J. Appl. Phys. 100, 114105 (2006).

    Article  ADS  Google Scholar 

  23. F. Guo, X. Wu, Qingshan Lu, and Sh. Zhao, Ceram. Int. 44, 2803 (2018).

    Article  Google Scholar 

  24. J. Zhai, X. Yao, J. Shen, L. Zhang, and H. Chen, J. Phys. D: Appl. Phys. 37, 748 (2004).

    Article  ADS  Google Scholar 

Download references

Funding

Ekaterina Vladimirovna Gushchina and Bogdan Romanovich Borodin acknowledges RFBR grant 18-32-00092_mol-a for supporting this work. Measurements with scanning electron microscopy and X-ray diffraction measurements were performed using the equipment of the Materials Science and Diagnostics in Advanced Technologies Federal Center for Collective Use (Ioffe Institute), partly with the financial support of the Ministry of Education and Science of the Russian Federation, agreement no. 14.621.21.0013 dated August 28, 2017, project identifier RFMEFI62117X0018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Gushchina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gushchina, E.V., Borodin, B.R., Sharov, V.A. et al. An Investigation of the Conductive and Ferroelectric Properties of BZT Films. Tech. Phys. 65, 2066–2071 (2020). https://doi.org/10.1134/S1063784220120105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220120105

Navigation