Skip to main content
Log in

Single-Mode W-Type Optical Fiber Stable Against Bending and Radiation

  • PHOTONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

It is shown that single-mode fluorosilicate optical fibers fabricated with the aid of modified chemical vapor deposition exhibit a significant decrease in the radiation resistance when 1 mol % GeO2 is introduced into the silica-glass core. Elimination of chlorine and OH group impurities in the silica glass of the core of the fluorosilicate single-mode fiber leads to a relatively low level of radiation-induced attenuation. Prior to radiation processing, the loss factors of optical fiber are 0.18 and 0.3 dB/km at wavelengths of 1.55 and 1.31 μm, respectively. The dependence of optical loss of such fibers on the bend diameter ranging from 6 to 12 mm is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. R. Nagel, J. B. MacChesney, and K. L. Walker, IEEE J. Quantum Electron. 18 (4), 459 (1982).

    Article  ADS  Google Scholar 

  2. V. A. Aksenov, V. V. Voloshin, I. L. Vorob’ev, I. I. Dolgov, G. A. Ivanov, V. A. Isaev, A. O. Kolosovskii, S. K. Morshnev, Yu. K. Chamorovskii, and M. Ya. Yakovlev, Radiotekhnika, No. 12, 51 (2005).

    Google Scholar 

  3. A. L. Tomashuk, M. Yu. Salgansky, P. F. Kashaykin, V.  F. Khopin, A. I. Sultangulova, K. N. Nishchev, S. E. Borisovsky, A. N. Guryanov, and E. M. J. Dianov, J. Lightwave Technol. 32 (2), 213 (2014).

    Article  ADS  Google Scholar 

  4. A. N. Guryanov, M. Yu. Salganskii, V. F. Khopin, A.  F.  Kosolapov, and S. L. Semenov, Inorg. Mater. 45 (7), 823 (2009). https://doi.org/10.1134/S0020168509070218

    Article  Google Scholar 

  5. L. G. Cohen, D. M. Marcuse, and W. L. Mammel, IEEE J. Quantum Electron. 18 (10), 1467 (1982).

    Article  ADS  Google Scholar 

  6. S. R. Nagel, J. Lightwave Technol. 2 (6), 213 (1984).

    Article  Google Scholar 

  7. K. Sanada, T. Shamoto, and K. J. Inada, J. Non-Cryst. Solids 189 (3), 283 (1995). https://doi.org/10.1016/0022-3093(95)00233-2

    Article  ADS  Google Scholar 

  8. S. Girard, J. Keurinck, A. Boukenter, J.-P. Meunier, J. Ouerdane, B. Azais, P. Charre, and M. Vie, Nucl. Instrum. Methods Phys. Res., Sect. B 215 (1–2), 187 (2004).

    Google Scholar 

  9. J. Bisutti, S. Girard, and J. Baggio, J. Non-Cryst. Solids 353, 461 (2007).

    Article  ADS  Google Scholar 

  10. K. Nagasawa, M. Tanabe, and K. Yahagi, Jpn. J. Appl. Phys. 23, 1608 (1984).

    Article  ADS  Google Scholar 

  11. S. Shibata and M. Nakahara, J. Lightwave Technol. 3 (4), 860 (1985).

    Article  ADS  Google Scholar 

  12. K. Aikawa, K. Izoe, N. Shamoto, M. Kudoh, and T. Tsumanuma, Fujikura Tech. Rev. 37, 9 (2008).

    Google Scholar 

  13. http://www.draka.com/communications.com.

  14. P. F. Kashaykin, A. L. Tomashuk, M. Yu. Salgansky, A. N. Abramov, R. N Nishchev, A. N. Guryanov, and E. M. J. Dianov, J. Lightwave Technol. 33 (9), 1788 (2015).

    Article  ADS  Google Scholar 

  15. A. L. Tomashuk, D. A. Dvoretskiy, V. A. Lazarev, A. B. Pnev, V. E. Karasik, M. Yu. Salganskiy, P. F. Kashaykin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, Vestn. MGTU im. N. E. Bauman. Ser. Priborostroenie, No. 5 (110), 111 (2016). https://doi.org/10.18698/0236-3933-2016-5-111-124

    Article  Google Scholar 

  16. A. N. Gur’yanov, E. M. Dianov, S. V. Lavrishchev, S. M. Mazavin, V. M. Mashinskii, V. B. Neustruev, N. I. Sokolov, and V. F. Khopin, Fiz. Khim. Stekla 12 (3), 359 (1986).

    Google Scholar 

  17. A. T. Andreev, A.B. Grudinin, E. M. Dianov, A. M. Prokhorov, A. N. Guryanov, G. G. Devjatykh, S. V. Ignatjev, and V. F. Hopin, Electron. Lett. 17 (12), 416 (1981).

    Article  ADS  Google Scholar 

  18. P. Wang, Q. Wang, G. Farrell, G. Rajan, T. Freir, and J. Cassidy, Microwave Opt. Technol. Lett. 49 (9), 2133 (2007). https://doi.org/10.1002/mop.22671

    Article  Google Scholar 

  19. S. Ju, P. R. Watekar, Y.-T. Ryu, Y. Lee, S. G. Kang, Y. Kim, K. Lingann, Y. H. Kim, and W.-T. Han, Fiber Integr. Opt. 38 (4), 191 (2019). https://doi.org/10.1080/01468030.2019.1598520

    Article  ADS  Google Scholar 

  20. P. F. Kashaikin, A. L. Tomashuk, M. Yu. Salganskii, I. S. Azanova, M. K. Tsibinogina, T. V. Dimakova, A. N. Gur’yanov, and E. M. Dianov, Tech. Phys. 64 (5), 701 (2019). https://doi.org/10.1134/S1063784219050098

    Article  Google Scholar 

  21. A. L. Tomashuk, E. M. Dianov, K. M. Golant, R. R. Khrapko, and D. E. Spinov, IEEE Trans. Nucl. Sci. 45 (3), 1566 (1998).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.V. Demidov (Head of the Department, Vavilov State Optical Institute) for measurements of the radial profile of the refractive index of preforms and E.G. Litunenko and A.V. Startseva (CSRI Elektropribor) for the results on electron microscopy of the fibers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Eron’yan.

Ethics declarations

The authors declare that there is no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eron’yan, M.A., Kulesh, A.Y., Reutskii, A.A. et al. Single-Mode W-Type Optical Fiber Stable Against Bending and Radiation. Tech. Phys. 65, 2051–2055 (2020). https://doi.org/10.1134/S1063784220120087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220120087

Navigation