Skip to main content
Log in

Resonance Properties of a Low-Pressure Dielectric Barrier Discharge

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The electrical characteristics of a dielectric barrier discharge (DBD) symmetrical actuator at low pressures gave been investigated. A power source–actuator–DBD system has been analyzed. The plot of the feed voltage frequency at which a voltage resonance is observed at the outer electrodes of an actuator with a given configuration against air pressure has been constructed. The DBD density, as well as the capacitance and Q factor of the system, as a function of pressure in a pressure chamber, has been determined. It has been found that, as the pressure drops, the fraction of the DBD energy spent on generating a synthetic jet grows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. Baleriola, A. Leroy, S. Loyer, P. Devinant, and S. Aubrun, J. Phys.: Conf. Ser. 753 (5), 052001 (2016).

    Google Scholar 

  2. S. L. Chernyshev, M. D. Gamirullin, V. Y. Khomich, A. P. Kuryachii, V. M. Litvinov, S. V. Manuilovich, and V. A. Yamshchikov, Aerosp. Sci. Technol. 59, 155 (2016).

    Article  Google Scholar 

  3. A. Santhanakrishnan, J. D. Jacob, and Y. B. Suzen, Proc. 3rd AIAA Flow Control Conf. (June 5–8, 2006, San Francisco, California), AIAA 2006-3033. https://doi.org/10.2514/6.2006-3033

  4. C. Pinzon and R. Agarwal, Proc. 46th AIAA Aerospace Sciences Meeting and Exhibit (January 7–10, 2008, Reno, Nevada), AIAA 2008-559. https://doi.org/10.2514/6.2008-559

  5. N. Qin and H. Xia, Proc. Inst. Mech. Eng., Part I 222 (5), 373 (2008).

    Google Scholar 

  6. H. Jiang, T. Shao, C. Zhang, P. Yan, and H. Liu, IEEE Trans. Plasma Sci. 46 (10), 3524 (2018).

    Article  ADS  Google Scholar 

  7. D. M. Orlov, G. I. Font, and D. Edelstein, AIAA J. 46 (12), 3142 (2008).

    Article  ADS  Google Scholar 

  8. M. Kuhnhenn, B. Simon, I. Maden, and J. Kriegseis, J. Fluid Mech. 809, R1 (2016). https://doi.org/10.1017/jfm.2016.679

    Article  ADS  Google Scholar 

  9. E. A. Shershunova, M. Malashin, S. Moshkunov, and V. Khomich, Acta Polytech. 55 (1), 59 (2015).

    Article  Google Scholar 

  10. V. M. Bocharnikov, I. V. Trifanov, and V. V. Golub, Tech. Phys. Lett. 45 (1), 31 (2019). https://doi.org/10.1134/S1063785019010206

    Article  ADS  Google Scholar 

  11. F. N. Glazyrin, I. A. Znamenskaya, I. V. Mursenkova, D. S. Naumov, and N. N. Sysoev, Tech. Phys. Lett. 42 (1), 63 (2016). https://doi.org/10.1134/S1063785016010223

    Article  ADS  Google Scholar 

  12. I. Biganzoli, R. Barni, A. Gurioli, R. Pertile, and C. Riccardi, J. Phys.: Conf. Ser. 550 (1), 012039 (2014).

    Google Scholar 

  13. V. R. Soloviev and V. M. Krivtsov, Plasma Sources Sci. Technol. 27 (11), 114001 (2018).

    Article  ADS  Google Scholar 

  14. I. Moralev, V. Sherbakova, I. Selivonin, and V. Bityurin, Int. J. Heat Mass Transfer 116, 1326 (2018).

    Article  Google Scholar 

  15. A. Starikovskiy, M. Post, N. Tkach, and R. Miles, Proc. 52nd Aerospace Sciences Meeting (January 13–17, 2014, National Harbor, Maryland), AIAA 2014-0144. https://doi.org/10.2514/6.2014-0144

  16. S. Dalvand, M. Ebrahimi, and S. G. Pouryoussefi, Appl. Therm. Eng. 129, 50 (2018).

    Article  Google Scholar 

  17. J. Kriegseis, B. Simon, and S. Grundmann, Appl. Mech. Rev. 68 (2), (2016).

  18. V. M.Bocharnikov, V. V. Volodin, and V. V. Golub, Tech. Phys. Lett. 42, 351 (2016). https://doi.org/10.1134/S1063785016040052

    Article  ADS  Google Scholar 

  19. C. Liu, A. Fridman, and D. Dobrynin, J. Phys. D: Appl. Phys. 52 (10), 105205 (2019).

    Article  ADS  Google Scholar 

  20. S. B. Leonov, I. V. Adamovich, and V. R. Soloviev, Plasma Sources Sci. Technol. 25 (6), 063001 (2016).

    Article  ADS  Google Scholar 

  21. A. Starikovskiy, Proc. 47th AIAA Plasmadynamics Lasers Conf. (June 13–17, 2016, Washington, DC, USA), AIAA 2016-017.

  22. H. Yan, L. Yang, X. Qi, and C. Ren, J. Phys. D: Appl. Phys. 49 (29), 295203 (2016).

    Article  Google Scholar 

  23. V. M.Bocharnikov, V. V. Volodin, and V. V. Golub, Usp. Prikl. Fiz. 5 (6), 559 (2017).

    Google Scholar 

  24. N. Benard and E. Moreau, Proc. 6th AIAA Flow Control Conf. (June 5–28, 2012, New Orleans, Louisiana), AIAA 2012-3136. https://doi.org/10.2514/6.2012-3136

  25. V. R. Soloviev, J. Phys. D: Appl. Phys. 45 (2), 025205 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Academy of Sciences in the framework of the program “Control of High Altitude Vehicles by Means of Dielectric Barrier Discharge.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Bocharnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharnikov, V.M., Volodin, V.V., Golub, V.V. et al. Resonance Properties of a Low-Pressure Dielectric Barrier Discharge. Tech. Phys. 65, 1969–1974 (2020). https://doi.org/10.1134/S1063784220120063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220120063

Navigation