Skip to main content
Log in

Ion Dynamics in an Atmospheric Source with Photoionization by Radiation of Laser Plasma

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A pulsed source of ions with ionization of the substance under study at atmospheric pressure by the UV radiation of laser plasma is numerically simulated. The calculations are based on an original mathematical model that describes evolution of an ensemble of ions in the presence of superimposed gas-dynamic and electric fields with allowance for the Coulomb interaction. The model contains a system of the Navier–Stokes equations for gas-dynamic flows in the volume under study, the Poisson equation for the resulting distribution of electric field in such a volume, and the Lorentz equation for construction of ion trajectories from the ionization place to collecting diaphragm. Convergence of the relaxation method is demonstrated for the numerical solution of the main model equations. The dependence of ion current on applied voltage is studied. It is shown that the calculated results are in good agreement with the experimental data when finiteness of the ion lifetime due to recombination effect is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. C. M. Whitehouse, R. N. Dreyer, M. Yamashita, and J. B. Fenn, Anal. Chem. 57 (3), 675 (1985).

    Article  Google Scholar 

  2. R. Javanshad and A. Venter, Anal. Methods 9 (34), 4896 (2017).

    Article  Google Scholar 

  3. R. B. Cody, J. A. Laramee, and H. D. Durst, Anal. Chem. 77 (8), 2297 (2005).

    Article  Google Scholar 

  4. M. Smoluch, P. Mielczarek, and J. Silberring, Mass Spectrom. Rev. 35 (1), 22 (2016).

    Article  ADS  Google Scholar 

  5. D. B. Robb, T. R. Covey, and A. P. Bruins, Anal. Chem. 72 (15), 3653 (2000).

    Article  Google Scholar 

  6. A. V. Pento, S. M. Nikiforov, Ya. O. Simanovsky, A. A. Grechnikov, and S. S. Alimpiev, Quantum Electron. 43 (1), 55 (2013).

    Article  ADS  Google Scholar 

  7. M. Constapel, M. Schellentrager, O. Schmitz, S. Gab, K. Brockmann, R. Giese, and T. Benter, Rapid Commun. Mass Spectrom. 19 (3), 326 (2005).

    Article  ADS  Google Scholar 

  8. S. I. Anisimov and B. S. Luk’yanchuk, Phys.-Usp. 45 (3), 293 (2002).

    Article  Google Scholar 

  9. E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, Phys. Plasmas 9 (3), 949 (2002).

    Article  ADS  Google Scholar 

  10. A. H. Lutey, J. Appl. Phys. 114, 083108 (2013).

    Article  ADS  Google Scholar 

  11. A. H. Hamad, in High Energy and Short Pulse Lasers (INTECH, 2016), Chap. 12, p. 305. https://www.intechopen.com/books/high-energy-and-short-pulse-lasers

    Google Scholar 

  12. S. S. Harilal, B. O’Shay, M. S. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. A. Back, J. Phys. D: Appl. Phys. 39 (3), 484 (2006).

    Article  ADS  Google Scholar 

  13. H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, Spectrochim. Acta, Part B 54, 1607 (1999).

    Article  ADS  Google Scholar 

  14. N. Farid, S. S. Harilal, H. Ding, and A. Hassanien, J. Appl. Phys. 115, 0331071 (2014).

    Article  Google Scholar 

  15. Ansys CFX-Solver Theory Guide (Ansys, 2018), p. 21.

  16. Ansys CFX (Canonsburg, PA, USA). http://www. ansys. com

  17. M. G. Skoblin, A. V. Chudinov, I. V. Sulimenkov, V. S. Brusov, A. A. Makarov, E. R. Wouters, and V. I. Kozlovskiy, Eur. J. Mass Spectrom. 23 (4), 187 (2017).

    Article  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Pergamon, New York, 1981).

  19. I. A. Buryakov, Tech. Phys. 49 (8), 967 (2004). https://doi.org/10.1134/1.1787653

    Article  Google Scholar 

  20. A. D. Andreeva, A. A. Elistratov, and L. N. Gall, Nauchn. Priborostr. 16 (2), 73 (2006).

    Google Scholar 

  21. O. M. Belotserkovskii and Yu. M. Davydov, Large Particle Method in Gas Dynamics (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  22. J. Barnes and P. Hut, Nature 324 (4), 446 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Ablizen.

Ethics declarations

The authors declare that there is no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ablizen, R.S., Monastyrskiy, M.A., Skoblin, M.G. et al. Ion Dynamics in an Atmospheric Source with Photoionization by Radiation of Laser Plasma. Tech. Phys. 65, 1905–1911 (2020). https://doi.org/10.1134/S1063784220120026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220120026

Navigation