Skip to main content
Log in

Morphology and Structure of Defected Niobium Oxide Nonuniform Arrays Formed by Anodizing Bilayer Al/Nb Systems

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The work is devoted to the X-ray diffraction research of defected niobium oxide nonuniform (NON) arrays and niobium oxide nanocolumns formed by electrochemical anodizing. The obtained results allow to make an assumption about the probable presence of a significant amount of NbO, NbO0.7, Nb2O5 and a small amount of NbO2, and Al in the composition of defected NON and the presence of all these substances in the nanocolumns of niobium oxide except NbO0.7, but in smaller quantities. The comparative analysis of the NON structure and the nanocolumns makes it possible to isolate, probably, a significant amount of Nb0.94O0.06, Nb6O in the defected nanocolumns, which was not found in NON.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. Surganov and G. Gorokh, Symp. on Design,Test, Integration, and Packaging of MEMS/MOEM, Vol. 4019 (2000). https://doi.org/10.1117/12.382321

  2. A. Mozalev, R. M. Vázquez, C. Bittencourt, D. Cossement, F. Gispert-Guirado, E. Liobel, and H. Habazaki, J. Mater. Chem. C 2 (24), 4847 (2014). https://doi.org/10.1039/c4tc00349g

    Article  Google Scholar 

  3. A. Pligovka, A. Lazavenka, and A. Zakhlebayeva, Proc. 18th Int. Conf. Nanotechnology (IEEE-NANO) (Cork, Ireland, 2018). https://doi.org/10.1109/NANO.2018.8626387

  4. A. Pligovka, A. Zakhlebayeva, and A. Lazavenka, J. Phys.: Conf. Ser. 987 (1), 012006 (2018). https://doi.org/10.1088/1742-6596/987/1/012006

    Article  Google Scholar 

  5. A. N. Pligovka and G. G. Gorokh, Nanostructures in Condensed Media: Collection of Scientific Articles (ITMO im. A. V. Lykova, Minsk, 2014), pp. 310–319 [in Russian].

  6. A. Pligovka, A. Lazavenka, and G. Gorokh, IEEE Trans. Nanotechnol. 18 (125), 790 (2019). https://doi.org/10.1109/TNANO.2019.2930901

    Article  ADS  Google Scholar 

  7. A. Mozalev, A. J. Smith, S. Borodin, A. Plihauka, A. W. Hassel, M. Sakairi, and H. Takahashi, Electrochim. Acta 54 (3), 935 (2009). https://doi.org/10.1016/j.electacta.2008.08.030

    Article  Google Scholar 

  8. A. Mozalev, M. Bendova, F. Gispert-Guirado, and E. Llobet, Chem. Mater. 30 (8), 2694 (2018). https://doi.org/10.1021/acs.chemmater.8b00188

    Article  Google Scholar 

  9. A. Mozalev, V. Khatko, C. Bittencourt, A. W. Hassel, G. Gorokh, E. Liobel, and X. Correig, Chem. Mater. 20 (20), 6482 (2008). https://doi.org/10.1021/cm801481z

    Article  Google Scholar 

  10. G. G. Gorokh, A. N. Pligovka, and A. A. Lozovenko, Tech. Phys. 64 (11), 1657 (2019). https://doi.org/10.1134/S1063784219110124

    Article  Google Scholar 

  11. A. Mozalev, M. Sakairi, I. Saeki, and H. Takahashi, Electrochim. Acta 48 (20), 3155 (2003). https://doi.org/10.1016/S0013-4686(03)00345-1

    Article  Google Scholar 

  12. M. A. Porai-Koshits, Fundamentals of Structural Analysis of Chemical Compounds: Textbook (Vysshaya Shkola, Moscow, 1989) [in Russian].

    Google Scholar 

  13. Ya. S. Umansky and N. V. Chirikov, Physical Encyclopedia (Great Russian Encyclopedia, Moscow, 1994), Vol. 4, pp. 377–378 [in Russian].

    Google Scholar 

  14. V. D. Krylov, Chemical Encyclopedia (Great Russian Encyclopedia, Moscow, 1995), Vol. 4, pp. 242–243 [in Russian].

    Google Scholar 

  15. V. S. Gorshkov, V. V. Timashev, and V. G. Savel’ev, Methods for Physicochemical Analysis of Binding Agents: Textbook (Vysshaya Shkola, Moscow, 1981), p. 335 [in Russian].

    Google Scholar 

  16. I. M. Zharskii and G. I. Novikov, Physical Research Methods in Inorganic Chemistry (Vysshaya Shkola, Moscow, 1988), p. 271 [in Russian].

    Google Scholar 

  17. R. S. Saifullin, Physicochemistry of Inorganic Polymer and Composite Materials (Khimiya, Moscow, 1990), p. 240 [in Russian].

    Google Scholar 

  18. N. M. Bobkova, Physical Chemistry of Refractory Nonmetallic and Silicate Materials (Vysshaya Shkola, Minsk, 2007), p. 301 [in Russian].

    Google Scholar 

  19. A. V. Kolpakov, Physical Encyclopedia (Sov. Encyclopedia, Moscow, 1988), Vol. 1, pp. 671–674 [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the Organizing Committee of the XXIV International Symposium “Nanophysics and Nanoelectronics” for the opportunity to present the research results. The authors thank Ulyana Turovets from the Belarusian State University of Informatics and Radioelectronics (BSUIR) for her help with computer modeling of the scheme of niobium oxide nonuniform arrays formation and Associate Professor of BSUIR, Alexander Poznyak, for valuable discussions.

Funding

The work was supported by the state research program of the Republic of Belarus “Convergence 2020” (task 3.03) and the scientific and technical program of the Union State “Technology-SG” (task 2.3.2.1) using the equipment of the center for collective use “Physics and Technology of Micro- and Nanostructures” at the Institute of Microstructure physics of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pligovka.

Ethics declarations

The authors state that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pligovka, A., Yunin, P., Hoha, A. et al. Morphology and Structure of Defected Niobium Oxide Nonuniform Arrays Formed by Anodizing Bilayer Al/Nb Systems. Tech. Phys. 65, 1771–1776 (2020). https://doi.org/10.1134/S1063784220110213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220110213

Navigation