Skip to main content
Log in

Physical and Technological Characteristic Features of the Process of Installation of Dies onto a Temporary Foundation in Internal Wiring Technology

  • SOLID STATE ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The physical and technological characteristic features of the installation of dies onto a temporary foundation in the internal wiring technology are studied. The justified selection of the material for the fixation of silicon dies active side down onto a temporary foundation from various solutions of polyamic acids (PAAs) is performed. The experimental dependence of the adhesion strength of silicon dies on the lifetime of the solutions of PAAs is found. The possible defects formed upon the imidization of PAAs in the process of creation of highly integrated microassemblies, multidie modules, and electronic modules of the “system in package” level are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Chen, IPC APEX EXPO Conf. Exhibition (San Diego, USA, 2013), pp. 934–961.

  2. V. D. Kravtsova, M. B. Umerzakova, N. E. Korobova, and D. V. Vertyanov, Russ. Microelectron. 47 (7), 455 (2018). https://doi.org/10.1134/S1063739718070077

    Article  Google Scholar 

  3. V. D. Kravtsova, M. B. Umerzakova, N. E. Korobova, and R. V. Sarieva, Russ. J. Appl. Chem. 90 (11), 1833 (2017). https://doi.org/10.1134/S1070427217110167

    Article  Google Scholar 

  4. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors. Physics and Materials Properties (Springer, Berlin, 2010).

    Book  Google Scholar 

  5. D. V. Vertyanov, E. S. Nazarov, S. P. Timoshenkov, V.  S. Petrov, and N. E. Korobova, RF Patent No. 2572588 (December 12, 2015).

  6. P. Tyler, K. Nulman, M. Fowler, and S. Molenhour, Chip Scale Rev., No. 1, 26 (2019).

  7. S. P. Timoshenkov, D. V. Vertyanov, and E. S. Nazarov, RF Patent No. 2597210 (August 17, 2016).

  8. R. Huemoeller and C. Zwenger, Chip Scale Rev., No. 2, 34 (2015).

  9. Fan Xuejun, Proc. 11th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (EuroSimE2010). https://doi.org/10.1109/ESIME.2010.5464548

  10. W. Rhines, Chip Scale Rev. 23 (1), 7 (2019).

    Google Scholar 

  11. S. Bezuk, Proc. 67th Electronic Components and Technology Conf. (ECTC 2017) (Orlando, USA, 2017), p. 6.

  12. L. Wang, T. Sterken, M. Cauwe, D. Cuypers, and J. Vanfleteren, IEEE Trans. Compon., Packag., Manuf. Technol. 2 (7), 1099 (2012). https://doi.org/10.1109/tcpmt.2012.2188402

    Article  Google Scholar 

  13. B. G. Collins, Laser Processing of Polymer on Copper. Master of Science Thesis in Electrical Engineering (Virginia Polytech. Inst. and State Univ., Blacksburg, Virginia, USA, 2001).

  14. A. M. Grushevskii, Assembly and Installation of Multi-Chip Modules (MIET, Moscow, 2003) [in Russian].

    Google Scholar 

  15. A. A. Zhukov, Abstract of the Candidate’s Dissertation (Russ. Technol. Univ., Moscow, 1997).

  16. GOST 27890-88. Decontaminable Protective Coatings (Paints). Adhesion Determination by Normal Pull-Off Method (Izd-vo Standartov, Moscow, 1988) [in Russian].

  17. T. Nishino, M. Kotera, N. Inayoshi, N. Miki, and K. Nakamae, Polymer 41 (18), 6913 (2000). https://doi.org/10.1016/S0032-3861(00)00002-1

    Article  Google Scholar 

  18. Y. Chang, W. C. Wu, and W. C. Chen, J. Electrochem. Soc. 148 (4), F77 (2001). https://doi.org/10.1149/1.1357183

    Article  ADS  Google Scholar 

  19. Xing Chen, Jingfa Yang, and Jiang Zhao, Polymer 143, 46 (2018). https://doi.org/10.1016/j.polymer.2018.04.005

    Article  Google Scholar 

  20. Ying Wang, Yang Yang, Zhenxing Jia, Jiaqiang Qin, and Yi Gu, Polymer 53 (19), 4157 (2012). https://doi.org/10.1016/j.polymer.2012.07.034

    Article  Google Scholar 

  21. Wenjuan Chen, Wei Chen, Baoqing Zhang, Shiyong Yang, and Chen-Yang Liu, Polymer 109, 205 (2017). https://doi.org/10.1016/j.polymer.2016.12.037

    Article  Google Scholar 

  22. Byoung-Hyoun Kim, Huijung Park, Heeyong Park, and Dong Cheul Moon, Thermochim. Acta 551, 184 (2013). https://doi.org/10.1016/j.tca.2012.10.029

    Article  Google Scholar 

Download references

Funding

The source of funding for this work was agreement no. 9/1251/2019 on the provision of a grant for state support from the centers of National Technological Initiative based on educational higher education institutions and scientific establishments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Korobova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vertyanov, D.V., Korobova, N.E., Pogudkin, A.V. et al. Physical and Technological Characteristic Features of the Process of Installation of Dies onto a Temporary Foundation in Internal Wiring Technology. Tech. Phys. 65, 1677–1684 (2020). https://doi.org/10.1134/S1063784220100230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220100230

Navigation