Skip to main content
Log in

An Equation of the State and Surface Properties of Amorphous Iron

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

It has been shown that three singular points related to an amorphous state can be distinguished in the dependence of the first coordination number kn on packing coefficient kp in the structure of a unicomponent material. The equation of state and properties of iron for both these three amorphous structures and the crystal state are calculated on the basis of the Mie–Lennard-Jones pair interatomic potential. It is shown that the chemical potential becomes minimal at kp = 0.45556 and kn = 6.2793; that is, this packing can be assigned to a thermodynamically stable amorphous structure corresponding to a liquid phase. A point that is energetically equivalent to this phase and has the same value of kn but another value of kp (0.6237) is a thermodynamically unstable amorphous structure corresponding to a solid phase. It was shown that the specific surface energy of an amorphous solid metal is higher than that of the amorphous liquid phase but is lower than the specific surface energy of a crystalline metal. This should lead to the fact that the surface of a crystalline metal will tend to amorphization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Hereafter, approximation by polynomials of different degrees is done by the least-squares method embedded in the Origin graphic plotter.

  2. The value T = 10 K was taken to show how the S-shaped loop varies on the fH(kp) dependence with temperature. At T = 10 K, the liquid phase cannot be in equilibrium with the solid (amorphous or crystalline) one.

REFERENCES

  1. D. K. Belashchenko, Computer Simulation of Liquid and Amorphous Substances (MISIS, Moscow, 2005) [in Russian].

    Google Scholar 

  2. R. N. Singh and I. Ali, Int. J. Appl. Phys. Math. 3 (4), 275 (2013). https://doi.org/10.7763/IJAPM.2013.V3.220

    Article  Google Scholar 

  3. G. Melnikov, S. Emelyanov, N. Ignatenko, and O. Manzhos, Key Eng. Mater. 781, 137 (2018). https://doi.org/10.4028/www.scientific.net/KEM.781.137.

    Article  Google Scholar 

  4. A. Baule, F. Morone, H. J. Herrmann, and H. A. Makse, Rev. Mod. Phys. 90 (1), 015006 (2018). https://doi.org/10.1103/RevModPhys.90.015006

    Article  ADS  Google Scholar 

  5. M. N. Magomedov, J. Struct. Chem. 49 (1), 156 (2008). https://doi.org/10.1007/s10947-008-0021-8

    Article  Google Scholar 

  6. V. I. Kalikmanov, J. Chem. Phys. 124 (12), 124505 (2006). https://doi.org/10.1063/1.2178812

    Article  ADS  Google Scholar 

  7. C. Song, P. Wang, and H. A. Makse, Nature 453 (7195), 629 (2008). https://doi.org/10.1038/nature06981

    Article  ADS  Google Scholar 

  8. M. Hanifpour, N. Francois, V. Robins, A. Kingston, S. V. Allaei, and M. Saadatfar, Phys. Rev. E 91 (6), 062202 (2015). https://doi.org/10.1103/PhysRevE.91.062202

    Article  ADS  Google Scholar 

  9. M. N. Magomedov, Tech. Phys. Lett. 45 (10), 1042 (2019). https://doi.org/10.1134/S1063785019100249

    Article  ADS  Google Scholar 

  10. W. G. Hoover and F. H. Ree, J. Chem. Phys. 49 (8), 3609 (1968). https://doi.org/10.1063/1.1670641

    Article  ADS  Google Scholar 

  11. M. N. Magomedov, Study of Interatomic Interaction, Vacancy Formation and Self-Diffusion in Crystals (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  12. M. N. Magomedov, Tech. Phys. 58 (9), 1297 (2013). https://doi.org/10.1134/S106378421309020X

    Article  Google Scholar 

  13. L. A. Girifalco, Statistical Physics of Materials (Wiley, New York, 1973).

    Google Scholar 

  14. M. N. Magomedov, Tech. Phys. 60 (11), 1619 (2015). https://doi.org/10.1134/S1063784215110195

    Article  Google Scholar 

  15. M. N. Magomedov, Crystallogr. Rep. 62 (3), 480 (2017). https://doi.org/10.1134/S1063774517030142

    Article  ADS  Google Scholar 

  16. E. F. Pichugin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 77 (1962).

  17. M. N. Magomedov, Tech. Phys. 62 (4), 569 (2017). https://doi.org/10.1134/S1063784217040156

    Article  Google Scholar 

  18. X. Huang, F. Li, Q. Zhou, Y. Meng, K. D. Litasov, X. Wang, B. Liu, and T. Cui, Sci. Rep. 6 (1–3), 19923 (2017). https://doi.org/10.1038/srep19923

    Article  ADS  Google Scholar 

  19. S. S. Batsanov and A. S. Batsanov, Introduction to Structural Chemistry (Springer, Heidelberg, 2012). https://doi.org/10.1007/978-94-007-4771-5

  20. Y. R. Luo, “Bond Dissociation Energies,” in CRC Handbook of Chemistry and Physics, Ed. by D. R. Lide, 90th ed. (CRC Press, Boca Raton, Florida, 2009). https://notendur.hi.is/agust/rannsoknir/papers/2010-91-CRC-BDEs-Tables.pdf.

    Google Scholar 

  21. V. E. Zinov’ev, The Thermophysical Proper ties of Metals at High Temperatures (Metallurgiya, Moscow, 1989) [in Russian].

    Google Scholar 

  22. D. R. Wilburn and W. A. Bassett, Am. Mineral. 63 (5–6), 591 (1978). https://pubs.geoscienceworld.org/msa/ammin/article-abstract/63/5-6/591/40926.

    Google Scholar 

  23. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E.Z. Meilikhov (CRC Press, Boca Raton, Florida, 1996).

    Google Scholar 

  24. S. I. Novikova, Thermal Expansion of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  25. V. K. Kumikov and Kh. B. Khokonov, J. Appl. Phys. 54 (3), 1346 (1983). https://doi.org/10.1063/1.332209

    Article  ADS  Google Scholar 

  26. V. K. Kumikov, Mater. Sci. Eng. 60 (3), L23 (1983). https://doi.org/10.1016/0025-5416(83)90016-2

    Article  Google Scholar 

  27. Y. Li and G. A. Somorjai, J. Phys. Chem. C 111 (27), 9631 (2007). https://doi.org/10.1021/jp071102f

    Article  Google Scholar 

  28. V. P. Bokarev, E. S. Gornev, and P. A. Todua, Kristallografiya 58 (1), 155 (2013). https://doi.org/10.7868/S0023476113010062

    Article  Google Scholar 

  29. P. N. Pusey and W. van Megen, Nature 320 (6060), 340 (1986). https://doi.org/10.1038/320340a0

    Article  ADS  Google Scholar 

  30. M. Campo and T. Speck, J. Chem. Phys. 152 (1), 014501 (2020). https://doi.org/10.1063/1.5134842

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks S.P. Kramynin, N.Sh. Gazanova, Z.M. Surkhaeva, and M.M. Gadzhieva for fruitful discussions and assistance.

Funding

This study was supported by the Russia Foundation for Basic Research (grant no. 18-29-11013_mk) and program no. 6 of the Presidium of the Russian Academy of Sciences (grant no. 2-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Magomedov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedov, M.N. An Equation of the State and Surface Properties of Amorphous Iron. Tech. Phys. 65, 1659–1665 (2020). https://doi.org/10.1134/S1063784220100138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220100138

Navigation