Skip to main content
Log in

X-Ray Diffraction Analysis of the Amorphous–Crystalline Phase Transition in Ni

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Systematic data on the amorphous–crystalline transition in Ni have been obtained by high-temperature X-ray diffraction analysis. It is established that the amorphous structure of Ni nanoparticles is stable up to 200°C. Ni nanocrystals, which have coherent-scattering regions (CSRs) 5–15 nm in size (depending on the isothermal annealing temperature) are formed in the temperature range of 300–600°C. The activation energy of nanocrystal growth has been estimated to be 67.3 kJ/mol. The dependence of the unit-cell parameter of nanocrystalline Ni on the CSR size is determined. An increase in the lattice constant is observed with an increase in CSR in nanocrystalline Ni particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Yu. K. Kovneristyi, Physicochemical Foundations of Creating Amorphous Metal Alloys (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  2. S. I. Popel’, M. A. Spiridonov, and L. A. Zhukova, Atomic Ordering in Melted and Amorphous Metals on Electron Diffraction Data (Ural Gos. Tekh. Univ.–UPI, Ekaterinburg, 1997) [in Russian].

  3. A. L. Greer, Science 267, 1947 (1995).

    Article  ADS  Google Scholar 

  4. Amorphous Metal Alloys, Ed. by F. E. Lyuborskiy (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  5. G. Herzer, Acta Mater. 61, 718 (2013).

    Article  Google Scholar 

  6. M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater. Sci. 44, 291 (1999).

    Article  Google Scholar 

  7. M. W. Grinstaff, M. B. Salamon, and K. S. Suslick, Phys. Rev. B: Condens. Matter Mater. Phys. 48, 269 (1993).

    Article  ADS  Google Scholar 

  8. J. M. Rojo, A. Hernando, M. El Ghannami, A. García-Escorial, M. A. González, R. García-Martínez, and L. Ricciarelli, Phys. Rev. Lett. 76 (25), 4833 (1996).

    Article  ADS  Google Scholar 

  9. C. A. Schuh and A. C. Lund, Nat. Mater. 2, 449 (2003).

    Article  ADS  Google Scholar 

  10. K. F. Yao, F. Ruan, Y. Q. Yang, and N. Chen, Appl. Phys. Lett. 88, 86 (2006).

    Google Scholar 

  11. C. A. Schuh, T. C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067 (2007).

    Article  Google Scholar 

  12. H. Guo, P. F. Yan, Y. B. Wang, J. Tan, Z. F. Zhang, M. L. Sui, and E. Ma, Nat. Mater. 6, 735 (2007).

    Article  ADS  Google Scholar 

  13. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  ADS  Google Scholar 

  14. J. D. Cao, N. T. Kirkland, K. J. Laws, N. Birbilis, and M. Ferry, Acta Biomater. 8, 2375 (2012).

    Article  Google Scholar 

  15. B. Zberg, P. J. Uggowitzer, and J. F. Löffler, Nat. Mater. 8, 887 (2009).

    Article  ADS  Google Scholar 

  16. Y. B. Wang, X. H. Xie, H. F. Li, X. L. Wang, M. Z. Zhao, E. W. Zhang, Y. J. Bai, Y. F. Zheng, and L. Qin, Acta Biomater. 7, 3196 (2011).

    Article  Google Scholar 

  17. G. Kumar, H. X. Tang, and J. Schroers, Nature 457, 868 (2009).

    Article  ADS  Google Scholar 

  18. J. C. Ingersoll, N. Mani, J. C. Thenmozhiyal, and A. Muthaiah, J. Power Sources 173, 450 (2007).

    Article  ADS  Google Scholar 

  19. H. B. Dai, Y. Liang, P. Wang, and H. M. Cheng, J. Power Sources 177, 17 (2008).

    Article  ADS  Google Scholar 

  20. R. Fernandes, N. Patel, and A. Miotell, Int. J. Hydrogen Energy 34, 2893 (2009).

    Article  Google Scholar 

  21. R. Fernandes, N. Patel, A. Miotell, and M. Filippi, J. Mol. Catal. A: Chem. 298, 1 (2009).

    Article  Google Scholar 

  22. M. Wen, Y. F. Wang, F. Zhang, and Q. S. Wu, J. Phys. Chem. 113, 5960 (2009).

    Google Scholar 

  23. H. L. Wang, J. M. Yan, Z. L. Wang, and Q. Jiang, Int. J. Hydrogen Energy 37, 10229 (2012).

    Article  Google Scholar 

  24. A. J. Maeland, Rapidly Quenched Metals, Ed. by S. Steeb and H. Warlimont (Elsevier, Amsterdam, 1985), p. 1507.

    Google Scholar 

  25. B. X. Liu, W. S. Lai, and Q. Zhang, Mater. Sci. Eng., R 29, 1 (2000).

  26. B. X. Liu, Z. C. Li, and H. R. Gong, Surf. Coat. Technol. 196, 2 (2005).

    Article  Google Scholar 

  27. R. B. Schwarz and C. C. Koch, Appl. Phys. Lett. 49, 146 (1986).

    Article  ADS  Google Scholar 

  28. L. Schultz, Mater. Sci. Eng. 97, 15 (1988).

    Article  Google Scholar 

  29. K. S. Suslick, S. B. Choe, A. A. Cichowlas, and M. W. Grinstaff, Nature 353, 414 (1991).

    Article  ADS  Google Scholar 

  30. Y. Koltypin, G. Katabi, X. Cao, R. Prozorov, and A. Gedanken, J. Non-Cryst. Solids 201, 159 (1996).

    Article  ADS  Google Scholar 

  31. R. A. Salkar, P. Jeevananda, S. T. Aruna, Y. Koltypin, and A. Gedanken, J. Mater. Chem. 9, 1333 (1999).

    Article  Google Scholar 

  32. J. M. Yan, X. B. Zhang, S. Han, H. Shioyama, and Q. Xu, Angew. Chem., Int. Ed. Engl. 47, 2287 (2008).

    Article  Google Scholar 

  33. K. Lu, Mater. Sci. Eng., R 16, 161 (1996).

  34. W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng., R 44, 45 (2004).

  35. J. J. Kim, Y. Choi, S. Suresh, and A. S. Argon, Science 295, 654 (2002).

    ADS  Google Scholar 

  36. W. H. Jiang and M. Atzmon, Scr. Mater. 54, 333 (2006). https://doi.org/10.1016/j.scriptamat.2005.09.052

    Article  Google Scholar 

  37. G. E. Abrosimova, Phys.-Usp. 54 (12), 1227 (2011). https://doi.org/10.3367/UFNe.0181.201112b.1265

    Article  Google Scholar 

  38. X. Zhang, T. Wang, L. Ma, Q. Zhang, and T. Jiang, Bioresour. Technol. 127, 306 (2013).

    Article  Google Scholar 

  39. A. Haryanto, S. Fernando, N. Murali, and S. Adhikari, Energy Fuels 19, 2098 (2005). https://doi.org/10.1021/ef0500538

    Article  Google Scholar 

  40. A. Kumar, A. S. Mukasyan, and E. E. Wolf, Appl. Catal., A 401, 20 (2011). https://doi.org/10.1016/j.apcata.2011.04.038

  41. A. Cross, A. Kumar, E. E. Wolf, and A. S. Mukasyan, Ind. Eng. Chem. Res. 51, 12004 (2012). https://doi.org/10.1021/ie301478n

    Article  Google Scholar 

  42. Z. Jiang, H. Yang, Z. Wei, Z. Xie, W. Zhong, and S. Wei, Appl. Catal., A 279, 165 (2005). https://doi.org/10.1016/j.apcata.2004.10.027

  43. Z. Wei, Z. Li, Z. Jiang, J. Ye, W. Zhong, J. Song, and S. Wei, J. Alloys Compd. 460, 553 (2008). https://doi.org/10.1016/j.jallcom.2007.06.017

    Article  Google Scholar 

  44. J. Rodriguez-Carvajal, Comm. Powder Diffr., Newsl., No. 26, 12 (2001). https://www.iucr.org/__data/assets/pdf_file/0019/21628/cpd26.pdf

  45. R. W. G. Wyckoff, “Cubic Closest Packed, CCP, Structure,” in Crystal Structures, 2nd ed. (Interscience, New York, 1963), Vol. 1, pp. 7–83.

    MATH  Google Scholar 

  46. Crystallography Open Database, http://www.crystallography.net/cod

  47. P. Thompson, D. E. Cox, and J. B. Hastings, J. Appl. Crystallogr. 20, 79 (1987).

    Article  Google Scholar 

  48. D. Martínez-Blanco, P. Gorria, J. A. Blanco, M. J. Pérez, and J. Campo, J. Phys.: Condens. Matter 20 (33), 335213 (2008). https://doi.org/10.1088/0953-8984/20/33/335213

    Article  Google Scholar 

  49. V. A. Bataev, V. G. Burov, I. A. Bataev, E. A. Drobyaz, and S. V. Veselov, Processes and Technologies for Producing Nanoscale Powders and Nanostructured Materials (Novosibirsk Gos. Tekh. Univ., Novosibirsk, 2017) [in Russian].

    Google Scholar 

  50. P. M. Diehm, P. Ágoston, and K. Albe, ChemPhysChem 13 (10), 2443 (2012). https://doi.org/10.1002/cphc.201220025

    Article  Google Scholar 

  51. Z. Wei, T. Xia, J. Ma, W. Feng, J. Dai, Q. Wang, and P. Yan, Mater. Charact. 58, 1019 (2007). https://doi.org/10.1016/j.matchar.2006.08.004

    Article  Google Scholar 

  52. R. Cammarata, Annu. Rev. Mater. Sci. 24, 215 (1994). https://doi.org/10.1146/annurev.ms.24.080194.001243

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by program no. 14.3 “Fundamentals and New Efficient Methods of Chemical Analysis and Investigation of the Structure of Substances and Materials” of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Kovalev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, D.Y., Chuev, I.I. X-Ray Diffraction Analysis of the Amorphous–Crystalline Phase Transition in Ni. Tech. Phys. 65, 1652–1658 (2020). https://doi.org/10.1134/S1063784220100102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220100102

Navigation